A linear inverse problem for a mixed type operator-differential equation with a parameter
Matematičeskie zametki SVFU, Tome 23 (2016), pp. 3-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the inverse problem $$Bu_t+pLu=\varphi (t)+f(t, p),\quad u(0, p)=u(T,p)=0.$$ The operators $B,\,L$ are selfadjoint in the Hilbert space $E$ and the spectrum of the operator $L$ is semibounded. The unique solvability of this problem is proved with using a series expansion in eigen and associated elements of the pencil $L-\lambda B.$
Keywords: inverse problem, mixed type equation.
@article{SVFU_2016_23_a0,
     author = {N. L. Abasheieva},
     title = {A linear inverse problem for a mixed type operator-differential equation with a parameter},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {3--18},
     publisher = {mathdoc},
     volume = {23},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2016_23_a0/}
}
TY  - JOUR
AU  - N. L. Abasheieva
TI  - A linear inverse problem for a mixed type operator-differential equation with a parameter
JO  - Matematičeskie zametki SVFU
PY  - 2016
SP  - 3
EP  - 18
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVFU_2016_23_a0/
LA  - ru
ID  - SVFU_2016_23_a0
ER  - 
%0 Journal Article
%A N. L. Abasheieva
%T A linear inverse problem for a mixed type operator-differential equation with a parameter
%J Matematičeskie zametki SVFU
%D 2016
%P 3-18
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVFU_2016_23_a0/
%G ru
%F SVFU_2016_23_a0
N. L. Abasheieva. A linear inverse problem for a mixed type operator-differential equation with a parameter. Matematičeskie zametki SVFU, Tome 23 (2016), pp. 3-18. http://geodesic.mathdoc.fr/item/SVFU_2016_23_a0/

[1] Abasheeva N. L., “Determination of a right-hand side term in operator-differential equation of mixed type”, J. Inverse Ill-Posed Probl., 10:6 (2002), 547–560 | DOI | MR | Zbl

[2] Fedorov V. E., Urazaeva A. V., “An inverse problem for linear Sobolev type equations”, J. Inverse Ill-Posed Probl., 12:4 (2004), 387–396 | DOI | MR

[3] Abasheeva N. L., “A linear inverse problem for operator-differential equation with a parameter”, Nonclassical Equations of Mathematical Physics, Int. Conf. “Differential Equations, Theory, and Applications.”, Sobolev Inst. Math., Novosibirsk, 2007, 5–14

[4] Abasheeva N. L., “Identification of a source in parabolic and hyperbolic equations with a parameter”, J. Inverse Ill-Posed Probl., 17:6 (2009), 527–544 | DOI | MR | Zbl

[5] Egorov I. E., Pyatkov S. G., Popov S. V., Neklassicheskie differentsialno-operatornye uravneniya, Nauka, Novosibirsk, 2000 | MR

[6] Triebel H., Interpolation Theory, Function Spaces, Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978 | MR

[7] Azizov T. Ya. and Iokhvidov I. S., Foundations of the Theory of Linear Operators in Spaces with Indefinite Metric, Nauka, Moscow, 1986 | MR

[8] Introduction to the theory of linear nonselfadjoint operators in Hilbert space, Translations of Mathematical Monographs, 18, Amer. Math. Soc., Providence, RI, 1969 | MR