Around Strassen's theorems
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 216 (2025) no. 3, pp. 386-411
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Two famous theorems of Strassen, on disintegration and the existence of a probability measure with given marginals, are extended to the case of operators in Kantorovich spaces. Relations of Strassen's theorems to the Monge–Kantorovich problem and Choquet's theory are also indicated. A brief survey of the necessary machinery, namely, the Hahn–Banach–Kantorovich theorem, the intrinsic characterization of subdifferentials, the Radon–Nikodým theorem for positive operators, measurable Banach bundles with lifting, Maharam extension and the tensor product of vector lattices, is given. 
Bibliography: 68 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Strassen theorems, disintegration, subdifferential, duality, Monge–Kantorovich problem, Choquet theory.
                    
                    
                    
                  
                
                
                @article{SM_2025_216_3_a8,
     author = {A. G. Kusraev and S. S. Kutateladze},
     title = {Around {Strassen's} theorems},
     journal = {Sbornik. Mathematics},
     pages = {386--411},
     publisher = {mathdoc},
     volume = {216},
     number = {3},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2025_216_3_a8/}
}
                      
                      
                    A. G. Kusraev; S. S. Kutateladze. Around Strassen's theorems. Sbornik. Mathematics, Tome 216 (2025) no. 3, pp. 386-411. http://geodesic.mathdoc.fr/item/SM_2025_216_3_a8/
