On the Hamilton--Jacobi theory for nonsmooth variational problems
Sbornik. Mathematics, Tome 216 (2025) no. 3, pp. 357-367

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the classical Bolza problem under fairly general assumptions on its components (the integrand and off-integral function). The main results obtained are: conditions for the semicontinuity of the value functions, a characterization of the subdifferential of the value function and a partial conversion of the latter result. Bibliography: 15 titles.
Keywords: value function, Hamiltonian, subdifferential, convex function, semicontinuity, pseudo-Lipschitz mapping.
@article{SM_2025_216_3_a6,
     author = {A. D. Ioffe},
     title = {On the {Hamilton--Jacobi} theory for nonsmooth variational problems},
     journal = {Sbornik. Mathematics},
     pages = {357--367},
     publisher = {mathdoc},
     volume = {216},
     number = {3},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2025_216_3_a6/}
}
TY  - JOUR
AU  - A. D. Ioffe
TI  - On the Hamilton--Jacobi theory for nonsmooth variational problems
JO  - Sbornik. Mathematics
PY  - 2025
SP  - 357
EP  - 367
VL  - 216
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2025_216_3_a6/
LA  - en
ID  - SM_2025_216_3_a6
ER  - 
%0 Journal Article
%A A. D. Ioffe
%T On the Hamilton--Jacobi theory for nonsmooth variational problems
%J Sbornik. Mathematics
%D 2025
%P 357-367
%V 216
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2025_216_3_a6/
%G en
%F SM_2025_216_3_a6
A. D. Ioffe. On the Hamilton--Jacobi theory for nonsmooth variational problems. Sbornik. Mathematics, Tome 216 (2025) no. 3, pp. 357-367. http://geodesic.mathdoc.fr/item/SM_2025_216_3_a6/