On the Hamilton--Jacobi theory for nonsmooth variational problems
Sbornik. Mathematics, Tome 216 (2025) no. 3, pp. 357-367
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the classical Bolza problem under fairly general assumptions on its components (the integrand and off-integral function).
The main results obtained are: conditions for the semicontinuity of the value functions, a characterization of the subdifferential of the value function and a partial conversion of the latter result.
Bibliography: 15 titles.
Keywords:
value function, Hamiltonian, subdifferential, convex function, semicontinuity, pseudo-Lipschitz mapping.
@article{SM_2025_216_3_a6,
author = {A. D. Ioffe},
title = {On the {Hamilton--Jacobi} theory for nonsmooth variational problems},
journal = {Sbornik. Mathematics},
pages = {357--367},
publisher = {mathdoc},
volume = {216},
number = {3},
year = {2025},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2025_216_3_a6/}
}
A. D. Ioffe. On the Hamilton--Jacobi theory for nonsmooth variational problems. Sbornik. Mathematics, Tome 216 (2025) no. 3, pp. 357-367. http://geodesic.mathdoc.fr/item/SM_2025_216_3_a6/