Optimal recovery of fractional powers of the Laplace difference operator
Sbornik. Mathematics, Tome 216 (2025) no. 3, pp. 445-455
Voir la notice de l'article provenant de la source Math-Net.Ru
The concept of a fractional power of the Laplace difference operator of a function on an $d$-dimensional lattice is introduced, and the problem of optimal recovery from inaccurate information about the function itself is stated for this fractional power. A family of optimal recovery methods is constructed.
Bibliography: 11 titles.
Keywords:
Laplace difference operator, optimal recovery, optimal method, extremal problem.
Mots-clés : Fourier transform
Mots-clés : Fourier transform
@article{SM_2025_216_3_a11,
author = {E. O. Sivkova},
title = {Optimal recovery of fractional powers of the {Laplace} difference operator},
journal = {Sbornik. Mathematics},
pages = {445--455},
publisher = {mathdoc},
volume = {216},
number = {3},
year = {2025},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2025_216_3_a11/}
}
E. O. Sivkova. Optimal recovery of fractional powers of the Laplace difference operator. Sbornik. Mathematics, Tome 216 (2025) no. 3, pp. 445-455. http://geodesic.mathdoc.fr/item/SM_2025_216_3_a11/