On some Carlson-type inequalities
Sbornik. Mathematics, Tome 216 (2025) no. 3, pp. 431-444

Voir la notice de l'article provenant de la source Math-Net.Ru

We find the sharp constant in the inequality $$ \|w(\cdot) x(\cdot)\|_{L_q(T)}\le K\|w_0(\cdot) x(\cdot)\|_{L_p(T)}^{\gamma}\biggl(\sum_{j=1}^d\|\varphi_j(\cdot) x(\cdot)\|_{L_r(T)}^r\biggr)^{(1-\gamma)/r}, $$ where $T$ is a cone in $\mathbb R^d$ and the weights $w(\cdot)$, $w_0(\cdot)$ and $\varphi_j(\cdot)$, $j=1,\dots,d$, are homogeneous measurable functions. We also obtain similar inequalities for some differential operators. Bibliography: 7 titles.
Keywords: sharp inequalities, differential operators, Carlson-type inequalities.
@article{SM_2025_216_3_a10,
     author = {K. Yu. Osipenko},
     title = {On some {Carlson-type} inequalities},
     journal = {Sbornik. Mathematics},
     pages = {431--444},
     publisher = {mathdoc},
     volume = {216},
     number = {3},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2025_216_3_a10/}
}
TY  - JOUR
AU  - K. Yu. Osipenko
TI  - On some Carlson-type inequalities
JO  - Sbornik. Mathematics
PY  - 2025
SP  - 431
EP  - 444
VL  - 216
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2025_216_3_a10/
LA  - en
ID  - SM_2025_216_3_a10
ER  - 
%0 Journal Article
%A K. Yu. Osipenko
%T On some Carlson-type inequalities
%J Sbornik. Mathematics
%D 2025
%P 431-444
%V 216
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2025_216_3_a10/
%G en
%F SM_2025_216_3_a10
K. Yu. Osipenko. On some Carlson-type inequalities. Sbornik. Mathematics, Tome 216 (2025) no. 3, pp. 431-444. http://geodesic.mathdoc.fr/item/SM_2025_216_3_a10/