On some Carlson-type inequalities
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 216 (2025) no. 3, pp. 431-444
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We find the sharp constant in the inequality
$$
\|w(\cdot) x(\cdot)\|_{L_q(T)}\le K\|w_0(\cdot) x(\cdot)\|_{L_p(T)}^{\gamma}\biggl(\sum_{j=1}^d\|\varphi_j(\cdot) x(\cdot)\|_{L_r(T)}^r\biggr)^{(1-\gamma)/r},
$$
where $T$ is a cone in $\mathbb R^d$ and the weights $w(\cdot)$, $w_0(\cdot)$ and $\varphi_j(\cdot)$, $j=1,\dots,d$, are homogeneous measurable functions. We also obtain similar inequalities for some differential operators. 
Bibliography: 7 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
sharp inequalities, differential operators, Carlson-type inequalities.
                    
                    
                    
                  
                
                
                @article{SM_2025_216_3_a10,
     author = {K. Yu. Osipenko},
     title = {On some {Carlson-type} inequalities},
     journal = {Sbornik. Mathematics},
     pages = {431--444},
     publisher = {mathdoc},
     volume = {216},
     number = {3},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2025_216_3_a10/}
}
                      
                      
                    K. Yu. Osipenko. On some Carlson-type inequalities. Sbornik. Mathematics, Tome 216 (2025) no. 3, pp. 431-444. http://geodesic.mathdoc.fr/item/SM_2025_216_3_a10/
