Properties of at most countable unions of~pairwise disjoint sets in asymmetric spaces
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 216 (2025) no. 2, pp. 257-269
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We show that an at most countable nonsingleton union of pairwise disjoint proximinal sets is not a Chebyshev set. We also characterize the asymmetric linear spaces where each boundedly compact (approximatively compact) set is proximinal.
Bibliography: 32 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
asymmetric normed space, Chebyshev set, $P$-connected set, approximatively compact set, proximinal set.
                    
                    
                    
                  
                
                
                @article{SM_2025_216_2_a4,
     author = {I. G. Tsar'kov},
     title = {Properties of at most countable unions of~pairwise disjoint sets in asymmetric spaces},
     journal = {Sbornik. Mathematics},
     pages = {257--269},
     publisher = {mathdoc},
     volume = {216},
     number = {2},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2025_216_2_a4/}
}
                      
                      
                    I. G. Tsar'kov. Properties of at most countable unions of~pairwise disjoint sets in asymmetric spaces. Sbornik. Mathematics, Tome 216 (2025) no. 2, pp. 257-269. http://geodesic.mathdoc.fr/item/SM_2025_216_2_a4/
