John--L\"{o}wner ellipsoids and entropy of multiplier operators on rank~$1$ compact homogeneous manifolds
Sbornik. Mathematics, Tome 216 (2025) no. 2, pp. 210-238

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a new method of the evaluation of entropy, which is based on volume estimates for John–Löwner ellipsoids induced by the eigenfunctions of Laplace–Beltrami operator on compact homogeneous manifolds $\mathbb{M}^{d}$ of rank $1$. This approach gives the sharp orders of entropy in the situations where the known methods meet difficulties of fundamental nature. In particular, we calculate the sharp orders of the entropy of the Sobolev classes $W_{p}^{\gamma }(\mathbb{M}^{d})$, $\gamma>0$, in $L_{q}(\mathbb{M}^{d})$, $1 \leq q \leq p \leq \infty$. Bibliography: 35 titles.
Keywords: John–Löwner ellipsoid, entropy, Riemannian manifold
Mots-clés : volume.
@article{SM_2025_216_2_a2,
     author = {A. K. Kushpel},
     title = {John--L\"{o}wner ellipsoids and entropy of multiplier operators on rank~$1$ compact homogeneous manifolds},
     journal = {Sbornik. Mathematics},
     pages = {210--238},
     publisher = {mathdoc},
     volume = {216},
     number = {2},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2025_216_2_a2/}
}
TY  - JOUR
AU  - A. K. Kushpel
TI  - John--L\"{o}wner ellipsoids and entropy of multiplier operators on rank~$1$ compact homogeneous manifolds
JO  - Sbornik. Mathematics
PY  - 2025
SP  - 210
EP  - 238
VL  - 216
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2025_216_2_a2/
LA  - en
ID  - SM_2025_216_2_a2
ER  - 
%0 Journal Article
%A A. K. Kushpel
%T John--L\"{o}wner ellipsoids and entropy of multiplier operators on rank~$1$ compact homogeneous manifolds
%J Sbornik. Mathematics
%D 2025
%P 210-238
%V 216
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2025_216_2_a2/
%G en
%F SM_2025_216_2_a2
A. K. Kushpel. John--L\"{o}wner ellipsoids and entropy of multiplier operators on rank~$1$ compact homogeneous manifolds. Sbornik. Mathematics, Tome 216 (2025) no. 2, pp. 210-238. http://geodesic.mathdoc.fr/item/SM_2025_216_2_a2/