The most symmetric smooth cubic surface
Sbornik. Mathematics, Tome 216 (2025) no. 2, pp. 168-209

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a classification of the largest automorphism groups of smooth cubic surfaces over arbitrary fields. Moreover, we prove that, given a field, a smooth cubic surface with the largest automorphism group is unique up to isomorphism. Bibliography: 19 titles.
Keywords: cubic surfaces
Mots-clés : automorphism group.
@article{SM_2025_216_2_a1,
     author = {A. V. Vikulova},
     title = {The most symmetric smooth cubic surface},
     journal = {Sbornik. Mathematics},
     pages = {168--209},
     publisher = {mathdoc},
     volume = {216},
     number = {2},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2025_216_2_a1/}
}
TY  - JOUR
AU  - A. V. Vikulova
TI  - The most symmetric smooth cubic surface
JO  - Sbornik. Mathematics
PY  - 2025
SP  - 168
EP  - 209
VL  - 216
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2025_216_2_a1/
LA  - en
ID  - SM_2025_216_2_a1
ER  - 
%0 Journal Article
%A A. V. Vikulova
%T The most symmetric smooth cubic surface
%J Sbornik. Mathematics
%D 2025
%P 168-209
%V 216
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2025_216_2_a1/
%G en
%F SM_2025_216_2_a1
A. V. Vikulova. The most symmetric smooth cubic surface. Sbornik. Mathematics, Tome 216 (2025) no. 2, pp. 168-209. http://geodesic.mathdoc.fr/item/SM_2025_216_2_a1/