Slim exceptional sets of Waring--Goldbach problem: two squares, two cubes and two biquadrates
Sbornik. Mathematics, Tome 216 (2025) no. 1, pp. 87-98
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $N$ be a sufficiently large number. We show that, with at most $O(N^{3/32+\varepsilon})$ exceptions, all even positive integers not exceeding $N$ can be represented in the form $p_1^2+p_2^2+p_3^3+p_4^3+p_5^4+p_6^4$, where $p_1, p_2, \dots, p_6$ are prime numbers. This is an improvement of the result $O(N^{7/18+\varepsilon})$ due to Zhang and Li.
Bibliography: 13 titles.
Keywords:
Waring–Goldbach problem, Hardy–Littlewood method, exceptional set.
@article{SM_2025_216_1_a4,
author = {Sh. Tian},
title = {Slim exceptional sets of {Waring--Goldbach} problem: two squares, two cubes and two biquadrates},
journal = {Sbornik. Mathematics},
pages = {87--98},
publisher = {mathdoc},
volume = {216},
number = {1},
year = {2025},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2025_216_1_a4/}
}
Sh. Tian. Slim exceptional sets of Waring--Goldbach problem: two squares, two cubes and two biquadrates. Sbornik. Mathematics, Tome 216 (2025) no. 1, pp. 87-98. http://geodesic.mathdoc.fr/item/SM_2025_216_1_a4/