Slim exceptional sets of Waring--Goldbach problem: two squares, two cubes and two biquadrates
Sbornik. Mathematics, Tome 216 (2025) no. 1, pp. 87-98

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $N$ be a sufficiently large number. We show that, with at most $O(N^{3/32+\varepsilon})$ exceptions, all even positive integers not exceeding $N$ can be represented in the form $p_1^2+p_2^2+p_3^3+p_4^3+p_5^4+p_6^4$, where $p_1, p_2, \dots, p_6$ are prime numbers. This is an improvement of the result $O(N^{7/18+\varepsilon})$ due to Zhang and Li. Bibliography: 13 titles.
Keywords: Waring–Goldbach problem, Hardy–Littlewood method, exceptional set.
@article{SM_2025_216_1_a4,
     author = {Sh. Tian},
     title = {Slim exceptional sets of {Waring--Goldbach} problem: two squares, two cubes and two biquadrates},
     journal = {Sbornik. Mathematics},
     pages = {87--98},
     publisher = {mathdoc},
     volume = {216},
     number = {1},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2025_216_1_a4/}
}
TY  - JOUR
AU  - Sh. Tian
TI  - Slim exceptional sets of Waring--Goldbach problem: two squares, two cubes and two biquadrates
JO  - Sbornik. Mathematics
PY  - 2025
SP  - 87
EP  - 98
VL  - 216
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2025_216_1_a4/
LA  - en
ID  - SM_2025_216_1_a4
ER  - 
%0 Journal Article
%A Sh. Tian
%T Slim exceptional sets of Waring--Goldbach problem: two squares, two cubes and two biquadrates
%J Sbornik. Mathematics
%D 2025
%P 87-98
%V 216
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2025_216_1_a4/
%G en
%F SM_2025_216_1_a4
Sh. Tian. Slim exceptional sets of Waring--Goldbach problem: two squares, two cubes and two biquadrates. Sbornik. Mathematics, Tome 216 (2025) no. 1, pp. 87-98. http://geodesic.mathdoc.fr/item/SM_2025_216_1_a4/