Multiple trigonometric series with~partially monotone coefficients
Sbornik. Mathematics, Tome 216 (2025) no. 1, pp. 71-86

Voir la notice de l'article provenant de la source Math-Net.Ru

Generalizations of the Hardy–Littlewood theorem to multiple trigonometric series with partially monotone coefficients are discussed. Bibliography: 8 titles.
Keywords: Pringsheim convergence, multiple trigonometric series with $k$-monotone coefficients, Hardy–Littlewood theorem.
@article{SM_2025_216_1_a3,
     author = {D. G. Dzhumabaeva and M. I. Dyachenko and E. D. Nursultanov},
     title = {Multiple trigonometric series with~partially monotone coefficients},
     journal = {Sbornik. Mathematics},
     pages = {71--86},
     publisher = {mathdoc},
     volume = {216},
     number = {1},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2025_216_1_a3/}
}
TY  - JOUR
AU  - D. G. Dzhumabaeva
AU  - M. I. Dyachenko
AU  - E. D. Nursultanov
TI  - Multiple trigonometric series with~partially monotone coefficients
JO  - Sbornik. Mathematics
PY  - 2025
SP  - 71
EP  - 86
VL  - 216
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2025_216_1_a3/
LA  - en
ID  - SM_2025_216_1_a3
ER  - 
%0 Journal Article
%A D. G. Dzhumabaeva
%A M. I. Dyachenko
%A E. D. Nursultanov
%T Multiple trigonometric series with~partially monotone coefficients
%J Sbornik. Mathematics
%D 2025
%P 71-86
%V 216
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2025_216_1_a3/
%G en
%F SM_2025_216_1_a3
D. G. Dzhumabaeva; M. I. Dyachenko; E. D. Nursultanov. Multiple trigonometric series with~partially monotone coefficients. Sbornik. Mathematics, Tome 216 (2025) no. 1, pp. 71-86. http://geodesic.mathdoc.fr/item/SM_2025_216_1_a3/