Solvability of nonlinear degenerate equations and estimates for inverse functions
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 216 (2025) no. 1, pp. 1-24
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For a continuous map $F$ from a finite-dimensional real space to another such space the question of the solvability of the nonlinear equation of the form $F(x)=y$ is investigated for $y$ close to a fixed value $F(\overline x)$. To do this, the concept of $\lambda$-truncation of the map $F$ in a neighbourhood of the point $\overline x$ is introduced and examined. A theorem on the uniqueness of a $\lambda$-truncation is proved. The regularity condition is introduced for $\lambda$-truncations; it is shown to be sufficient for the solvability of the equation in question. A priori estimates for the solution are obtained. 
Bibliography: 16 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
nonlinear equation with parameter, abnormal point, $\lambda$-truncation, directional regularity.
                    
                    
                    
                  
                
                
                @article{SM_2025_216_1_a0,
     author = {A. V. Arutyunov and S. E. Zhukovskiy},
     title = {Solvability of nonlinear degenerate equations and estimates for inverse functions},
     journal = {Sbornik. Mathematics},
     pages = {1--24},
     publisher = {mathdoc},
     volume = {216},
     number = {1},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2025_216_1_a0/}
}
                      
                      
                    TY - JOUR AU - A. V. Arutyunov AU - S. E. Zhukovskiy TI - Solvability of nonlinear degenerate equations and estimates for inverse functions JO - Sbornik. Mathematics PY - 2025 SP - 1 EP - 24 VL - 216 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2025_216_1_a0/ LA - en ID - SM_2025_216_1_a0 ER -
A. V. Arutyunov; S. E. Zhukovskiy. Solvability of nonlinear degenerate equations and estimates for inverse functions. Sbornik. Mathematics, Tome 216 (2025) no. 1, pp. 1-24. http://geodesic.mathdoc.fr/item/SM_2025_216_1_a0/
