Solvability of nonlinear degenerate equations and estimates for inverse functions
Sbornik. Mathematics, Tome 216 (2025) no. 1, pp. 1-24

Voir la notice de l'article provenant de la source Math-Net.Ru

For a continuous map $F$ from a finite-dimensional real space to another such space the question of the solvability of the nonlinear equation of the form $F(x)=y$ is investigated for $y$ close to a fixed value $F(\overline x)$. To do this, the concept of $\lambda$-truncation of the map $F$ in a neighbourhood of the point $\overline x$ is introduced and examined. A theorem on the uniqueness of a $\lambda$-truncation is proved. The regularity condition is introduced for $\lambda$-truncations; it is shown to be sufficient for the solvability of the equation in question. A priori estimates for the solution are obtained. Bibliography: 16 titles.
Keywords: nonlinear equation with parameter, abnormal point, $\lambda$-truncation, directional regularity.
@article{SM_2025_216_1_a0,
     author = {A. V. Arutyunov and S. E. Zhukovskiy},
     title = {Solvability of nonlinear degenerate equations and estimates for inverse functions},
     journal = {Sbornik. Mathematics},
     pages = {1--24},
     publisher = {mathdoc},
     volume = {216},
     number = {1},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2025_216_1_a0/}
}
TY  - JOUR
AU  - A. V. Arutyunov
AU  - S. E. Zhukovskiy
TI  - Solvability of nonlinear degenerate equations and estimates for inverse functions
JO  - Sbornik. Mathematics
PY  - 2025
SP  - 1
EP  - 24
VL  - 216
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2025_216_1_a0/
LA  - en
ID  - SM_2025_216_1_a0
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%A S. E. Zhukovskiy
%T Solvability of nonlinear degenerate equations and estimates for inverse functions
%J Sbornik. Mathematics
%D 2025
%P 1-24
%V 216
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2025_216_1_a0/
%G en
%F SM_2025_216_1_a0
A. V. Arutyunov; S. E. Zhukovskiy. Solvability of nonlinear degenerate equations and estimates for inverse functions. Sbornik. Mathematics, Tome 216 (2025) no. 1, pp. 1-24. http://geodesic.mathdoc.fr/item/SM_2025_216_1_a0/