@article{SM_2024_215_5_a1,
author = {M. R. Gabdullin and A. O. Radomskii},
title = {Prime avoiding numbers form a~basis of order~$2$},
journal = {Sbornik. Mathematics},
pages = {612--633},
year = {2024},
volume = {215},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_5_a1/}
}
M. R. Gabdullin; A. O. Radomskii. Prime avoiding numbers form a basis of order $2$. Sbornik. Mathematics, Tome 215 (2024) no. 5, pp. 612-633. http://geodesic.mathdoc.fr/item/SM_2024_215_5_a1/
[1] R. A. Rankin, “The difference between consecutive prime numbers”, J. London Math. Soc., 13:4 (1938), 242–247 | DOI | MR | Zbl
[2] E. Westzynthius, “Über die Verteilung der Zahlen, die zu den $n$ ersten Primzahlen teilerfremd sind”, Comment. Phys.-Math. Soc. Sci. Fenn., 5:25 (1931), 1–37 | Zbl
[3] P. Erdős, “On the difference of consecutive primes”, Quart. J. Math. Oxford Ser., 6 (1935), 124–128 | DOI | Zbl
[4] J. Pintz, “Very large gaps between consecutive primes”, J. Number Theory, 63:2 (1997), 286–301 | DOI | MR | Zbl
[5] K. Ford. B. Green, S. Konyagin and T. Tao, “Large gaps between consecutive prime numbers”, Ann. of Math. (2), 183:3 (2016), 935–974 | DOI | MR | Zbl
[6] J. Maynard, “Large gaps between primes”, Ann. of Math. (2), 183:3 (2016), 915–933 | DOI | MR | Zbl
[7] P. Erdős, “Some of my favourite unsolved problems”, A tribute to Paul Erdős, Cambridge Univ. Press, Cambridge, 1990, 467–478 | DOI | MR | Zbl
[8] K. Ford, B. Green, S. Konyagin, J. Maynard and T. Tao, “Long gaps between primes”, J. Amer. Math. Soc., 31:1 (2018), 65–105 | DOI | MR | Zbl
[9] H. Cramér, “On the order of magnitude of the difference between consecutive prime numbers”, Acta Arith., 2 (1936), 23–46 | DOI | Zbl
[10] A. Granville, “Harald Cramér and the distribution of prime numbers”, Scand. Actuar. J., 1995:1 (1995), 12–28 | DOI | MR | Zbl
[11] W. Banks, K. Ford and T. Tao, “Large prime gaps and probabilistic models”, Invent. Math., 233:3 (2023), 1471–1518 | DOI | MR | Zbl
[12] R. C. Baker, G. Harman and J. Pintz, “The difference between consecutive primes. II”, Proc. London Math. Soc. (3), 83:3 (2001), 532–562 | DOI | MR | Zbl
[13] K. Ford, D. R. Heath-Brown and S. Konyagin, “Large gaps between consecutive prime numbers containing perfect powers”, Analytic number theory, Springer, Cham, 2015, 83–92 | DOI | MR | Zbl
[14] H. Maier and M. Th. Rassias, “Large gaps between consecutive prime numbers containing perfect $k$th powers of prime numbers”, J. Funct. Anal., 272:6 (2017), 2659–2696 | DOI | MR | Zbl
[15] H. Maier and M. Th. Rassias, “Prime avoidance property of $k$th powers of prime numbers with Beatty sequence”, Discrete mathematics and applications, Springer Optim. Appl., 165, Springer, Cham, 2020, 397–404 | DOI | MR | Zbl
[16] K. Ford, S. Konyagin, J. Maynard, C. B. Pomerance and T. Tao, “Long gaps in sieved sets”, J. Eur. Math. Soc. (JEMS), 23:2 (2021), 667–700 | DOI | MR | Zbl
[17] K. Ford, S. Konyagin, J. Maynard, C. B. Pomerance and T. Tao, “Corrigendum: Long gaps in sieved sets”, J. Eur. Math. Soc. (JEMS), 25:6 (2023), 2483–2485 | DOI | MR | Zbl