Prime avoiding numbers form a~basis of order~$2$
Sbornik. Mathematics, Tome 215 (2024) no. 5, pp. 612-633
Voir la notice de l'article provenant de la source Math-Net.Ru
For a positive integer $n$ we denote by $F(n)$ the distance of $n$ to the nearest prime number. Using the technique from the recent paper “Long gaps in sieved sets” by Ford, Konyagin, Maynard, Pomerance and Tao (J. Eur. Math. Soc., 23:2 (2021), 667–700) we prove that every sufficiently large positive integer $N$ can be represented as a sum $N=n_1+n_2$, where $F(n_i) \geq (\log N)(\log\log N)^{1/325565}$ for $i=1,2$. This improves the corresponding ‘trivial’ statement where only the inequality $F(n_i)\gg \log N$ is assumed.
Bibliography: 17 titles.
Keywords:
prime numbers, basis, sieving.
@article{SM_2024_215_5_a1,
author = {M. R. Gabdullin and A. O. Radomskii},
title = {Prime avoiding numbers form a~basis of order~$2$},
journal = {Sbornik. Mathematics},
pages = {612--633},
publisher = {mathdoc},
volume = {215},
number = {5},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_5_a1/}
}
M. R. Gabdullin; A. O. Radomskii. Prime avoiding numbers form a~basis of order~$2$. Sbornik. Mathematics, Tome 215 (2024) no. 5, pp. 612-633. http://geodesic.mathdoc.fr/item/SM_2024_215_5_a1/