Widths and rigidity
Sbornik. Mathematics, Tome 215 (2024) no. 4, pp. 543-571

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Kolmogorov widths of finite sets of functions. Any orthonormal system of $N$ functions in $L_2$ is rigid, that is, it cannot be well approximated by linear subspaces of dimension essentially smaller than $N$. This is not true for weaker metrics: it is known that in every $L_p$ for $p2$ the first $N$ Walsh functions can be $o(1)$-approximated by a linear space of dimension $o(N)$. We present some sufficient conditions for rigidity. We prove that the independence of functions (in the probabilistic meaning) implies rigidity in $L_1$ and even in $L_0$, the metric that corresponds to convergence in measure. In the case of $L_p$ for $1$ the condition is weaker: any $S_{p'}$-system is $L_p$-rigid. Also we obtain some positive results, for example, that the first $N$ trigonometric functions can be approximated by very low-dimensional spaces in $L_0$, and by subspaces generated by $o(N)$ harmonics in $L_p$ for ${p1}$. Bibliography: 34 titles.
Keywords: Kolmogorov width, averaged width, matrix rigidity.
Mots-clés : $\mathrm{vc}$-dimension
@article{SM_2024_215_4_a4,
     author = {Yu. V. Malykhin},
     title = {Widths and rigidity},
     journal = {Sbornik. Mathematics},
     pages = {543--571},
     publisher = {mathdoc},
     volume = {215},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_4_a4/}
}
TY  - JOUR
AU  - Yu. V. Malykhin
TI  - Widths and rigidity
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 543
EP  - 571
VL  - 215
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_4_a4/
LA  - en
ID  - SM_2024_215_4_a4
ER  - 
%0 Journal Article
%A Yu. V. Malykhin
%T Widths and rigidity
%J Sbornik. Mathematics
%D 2024
%P 543-571
%V 215
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2024_215_4_a4/
%G en
%F SM_2024_215_4_a4
Yu. V. Malykhin. Widths and rigidity. Sbornik. Mathematics, Tome 215 (2024) no. 4, pp. 543-571. http://geodesic.mathdoc.fr/item/SM_2024_215_4_a4/