@article{SM_2024_215_1_a5,
author = {S. V. Zakharov},
title = {Constructing the asymptotics of a~solution of the heat equation from the known asymptotics of the initial function in three-dimensional space},
journal = {Sbornik. Mathematics},
pages = {101--118},
year = {2024},
volume = {215},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_1_a5/}
}
TY - JOUR AU - S. V. Zakharov TI - Constructing the asymptotics of a solution of the heat equation from the known asymptotics of the initial function in three-dimensional space JO - Sbornik. Mathematics PY - 2024 SP - 101 EP - 118 VL - 215 IS - 1 UR - http://geodesic.mathdoc.fr/item/SM_2024_215_1_a5/ LA - en ID - SM_2024_215_1_a5 ER -
%0 Journal Article %A S. V. Zakharov %T Constructing the asymptotics of a solution of the heat equation from the known asymptotics of the initial function in three-dimensional space %J Sbornik. Mathematics %D 2024 %P 101-118 %V 215 %N 1 %U http://geodesic.mathdoc.fr/item/SM_2024_215_1_a5/ %G en %F SM_2024_215_1_a5
S. V. Zakharov. Constructing the asymptotics of a solution of the heat equation from the known asymptotics of the initial function in three-dimensional space. Sbornik. Mathematics, Tome 215 (2024) no. 1, pp. 101-118. http://geodesic.mathdoc.fr/item/SM_2024_215_1_a5/
[1] J. Fourier, Théorie analytique de la chaleur, Firmin Didot, Père et Fils, Paris, 1822, xxii+639 pp. | MR | Zbl
[2] T. N. Narasimhan, “Fourier's heat conduction equation: history, influence, and connections”, Rev. Geophys., 37:1 (1999), 151–172 | DOI
[3] O. A. Ladyzhenskaya, “On the uniqueness of the solution of the Cauchy problem for a linear parabolic equation”, Mat. Sb., 27(69):2 (1950), 175–184 (Russian) | MR | Zbl
[4] A. M. Il'in, A. S. Kalashnikov and O. A. Oleinik, “Linear equations of the second order of parabolic type”, Russian Math. Surveys, 17:3 (1962), 1–143 | DOI | MR | Zbl
[5] A. M. Il'in, Matching of asymptotic expansions of solutions of boundary value problems, Transl. Math. Monogr., 102, Amer. Math. Soc., Providence, RI, 1992, x+281 pp. | DOI | MR | Zbl
[6] S. V. Zakharov, “Cauchy problem for a quasilinear parabolic equation with a large initial gradient and low viscosity”, Comput. Math. Math. Phys., 50:4 (2010), 665–672 | DOI | MR | Zbl
[7] S. V. Zakharov, “Heat distribution in an infinite rod”, Math. Notes, 80:3 (2006), 366–371 | DOI | MR | Zbl
[8] V. N. Denisov, “On the behaviour of solutions of parabolic equations for large values of time”, Russian Math. Surveys, 60:4 (2005), 721–790 | DOI | MR | Zbl
[9] V. N. Denisov, “On the large-time behaviour of solutions of parabolic equations”, Partial differential equations, Sovrem. Mat. Fundam. Napravl., 66, no. 1, RUDN University, Moscow, 2020, 1–155 (Russian) | DOI | MR
[10] A. M. Il'in, “The behaviour of the solution of the Cauchy problem for a parabolic equation under unlimited growth of time”, Uspekhi Mat. Nauk, 16:2(98) (1961), 115–121 (Russian) | MR | Zbl
[11] V. N. Denisov, “On stabilization of the Poisson integral and Tikhonov–Stieltjes means: two-sided estimate”, Dokl. Math., 103:1 (2021), 32–34 | DOI | MR | Zbl
[12] F. Kh. Mukminov, “The behavior, for $t\to \infty$, of solutions of the first mixed problem for the heat-transfer equation in regions unbounded in the space variables”, Differ. Equ., 15 (1980), 1444–1453 | MR | Zbl
[13] F. Kh. Mukminov, “On uniform stabilization of solutions of the first mixed problem for a parabolic equation”, Math. USSR-Sb., 71:2 (1992), 331–353 | DOI | MR | Zbl
[14] A. V. Lezhnev, “On the behavior, for large time values, of nonnegative solutions of the second mixed problem for a parabolic equation”, Math. USSR-Sb., 57:1 (1987), 195–209 | DOI | MR | Zbl
[15] V. I. Ushakov, “The behavior for $t\to \infty$ of solutions of the third mixed problem for second-order parabolic equations”, Differ. Equ., 15 (1979), 212–219 | MR | Zbl
[16] Yu. N. Čeremnyh, “The behavior of solutions of boundary value problems for second order parabolic equations as $t$ grows without bound”, Math. USSR-Sb., 4:2 (1968), 219–232 | DOI | MR | Zbl
[17] V. V. Zhikov, “Asymptotic problems connected with the heat equation in perforated domains”, Math. USSR-Sb., 71:1 (1992), 125–147 | DOI | MR | Zbl
[18] A. M. Il'in and R. Z. Has'minskiĭ, “Asymptotic behavior of solutions of parabolic equations and an ergodic property of nonhomogeneous diffusion processes”, Amer. Math. Soc. Transl. Ser. 2, 49, Amer. Math. Soc., Providence, RI, 1966, 241–268 | DOI | MR | Zbl
[19] V. N. Denisov, “Stabilization of a Poisson integral in the class of functions with power growth rate”, Differ. Equ., 21 (1985), 24–31 | MR | Zbl
[20] V. N. Denisov, “Stabilization of the solution to the Cauchy problem for a parabolic equation with lowest order coefficients and an increasing initial function”, Dokl. Math., 70:1 (2004), 571–573 | MR | Zbl
[21] A. Friedman, “Asymptotic behavior of solutions of parabolic equations of any order”, Acta Math., 106:1–2 (1961), 1–43 | DOI | MR | Zbl
[22] A. Friedman, Partial differential equations of parabolic type, Englewood Cliffs, NJ, Prentice-Hall, Inc., 1964, xiv+347 pp. | MR | Zbl
[23] S. V. Zakharov, “Asymptotic calculation of the heat distribution in a plane”, Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 243–249 | DOI | MR | Zbl
[24] S. V. Zakharov, “The asymptotics of a solution of the multidimensional heat equation with unbounded initial data”, Ural Math. J., 7:1 (2021), 168–177 | DOI | MR | Zbl
[25] H. Poincaré, “Sur les intégrales irrégulières. Des équations linéaires”, Acta Math., 8:1 (1886), 295–344 | DOI | MR | Zbl
[26] A. Erdélyi, Asymptotic expansions, Dover Publications, Inc., New York, 1956, vi+108 pp. | MR | Zbl
[27] A. R. Danilin, “Asymptotic behaviour of bounded controls for a singular elliptic problem in a domain with a small cavity”, Sb. Math., 189:11 (1998), 1611–1642 | DOI | MR | Zbl
[28] A. R. Danilin, “Asymptotic behavior of the optimal cost functional for a rapidly stabilizing indirect control in the singular case”, Comput. Math. Math. Phys., 46:12 (2006), 2068–2079 | DOI | MR
[29] A. M. Il'in and A. R. Danilin, Asymptotic methods in analysis, Fizmatlit, Moscow, 2009, 248 pp. (Russian) | Zbl
[30] N. N. Lebedev, Special functions and their applications, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1965, xii+308 pp. | MR | Zbl
[31] S. V. Zakharov, “Asymptotic solution of the multidimensional Burgers equation near a singularity”, Theoret. and Math. Phys., 196:1 (2018), 976–982 | DOI | MR | Zbl