Knot as a~complete invariant of a~Morse-Smale 3-diffeomorphism with four fixed points
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 214 (2023) no. 8, pp. 1140-1152
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is known that the topological conjugacy class of a Morse-Smale flows with unique saddle is defined by the equivalence class of the Hopf knot in $\mathbb S^2\times\mathbb S^1$ that is the projection of the one-dimensional saddle separatrix onto the basin of attraction of the nodal point, and the ambient manifold of a diffeomorphism in this class is the 3-sphere. In the present paper a similar result is obtained for gradient-like diffeomorphisms with exactly two saddle points and unique heteroclinic curve.
Bibliography: 11 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
gradient-like diffeomorphism, topological conjugacy, Morse-Smale diffeomorphism.
                    
                    
                    
                  
                
                
                @article{SM_2023_214_8_a5,
     author = {O. V. Pochinka and E. A. Talanova and D. D. Shubin},
     title = {Knot as a~complete invariant of {a~Morse-Smale} 3-diffeomorphism with four fixed points},
     journal = {Sbornik. Mathematics},
     pages = {1140--1152},
     publisher = {mathdoc},
     volume = {214},
     number = {8},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_8_a5/}
}
                      
                      
                    TY - JOUR AU - O. V. Pochinka AU - E. A. Talanova AU - D. D. Shubin TI - Knot as a~complete invariant of a~Morse-Smale 3-diffeomorphism with four fixed points JO - Sbornik. Mathematics PY - 2023 SP - 1140 EP - 1152 VL - 214 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2023_214_8_a5/ LA - en ID - SM_2023_214_8_a5 ER -
%0 Journal Article %A O. V. Pochinka %A E. A. Talanova %A D. D. Shubin %T Knot as a~complete invariant of a~Morse-Smale 3-diffeomorphism with four fixed points %J Sbornik. Mathematics %D 2023 %P 1140-1152 %V 214 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2023_214_8_a5/ %G en %F SM_2023_214_8_a5
O. V. Pochinka; E. A. Talanova; D. D. Shubin. Knot as a~complete invariant of a~Morse-Smale 3-diffeomorphism with four fixed points. Sbornik. Mathematics, Tome 214 (2023) no. 8, pp. 1140-1152. http://geodesic.mathdoc.fr/item/SM_2023_214_8_a5/
