Knot as a complete invariant of a Morse-Smale 3-diffeomorphism with four fixed points
Sbornik. Mathematics, Tome 214 (2023) no. 8, pp. 1140-1152 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is known that the topological conjugacy class of a Morse-Smale flows with unique saddle is defined by the equivalence class of the Hopf knot in $\mathbb S^2\times\mathbb S^1$ that is the projection of the one-dimensional saddle separatrix onto the basin of attraction of the nodal point, and the ambient manifold of a diffeomorphism in this class is the 3-sphere. In the present paper a similar result is obtained for gradient-like diffeomorphisms with exactly two saddle points and unique heteroclinic curve. Bibliography: 11 titles.
Keywords: gradient-like diffeomorphism, topological conjugacy, Morse-Smale diffeomorphism.
@article{SM_2023_214_8_a5,
     author = {O. V. Pochinka and E. A. Talanova and D. D. Shubin},
     title = {Knot as a~complete invariant of {a~Morse-Smale} 3-diffeomorphism with four fixed points},
     journal = {Sbornik. Mathematics},
     pages = {1140--1152},
     year = {2023},
     volume = {214},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_8_a5/}
}
TY  - JOUR
AU  - O. V. Pochinka
AU  - E. A. Talanova
AU  - D. D. Shubin
TI  - Knot as a complete invariant of a Morse-Smale 3-diffeomorphism with four fixed points
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 1140
EP  - 1152
VL  - 214
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_8_a5/
LA  - en
ID  - SM_2023_214_8_a5
ER  - 
%0 Journal Article
%A O. V. Pochinka
%A E. A. Talanova
%A D. D. Shubin
%T Knot as a complete invariant of a Morse-Smale 3-diffeomorphism with four fixed points
%J Sbornik. Mathematics
%D 2023
%P 1140-1152
%V 214
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2023_214_8_a5/
%G en
%F SM_2023_214_8_a5
O. V. Pochinka; E. A. Talanova; D. D. Shubin. Knot as a complete invariant of a Morse-Smale 3-diffeomorphism with four fixed points. Sbornik. Mathematics, Tome 214 (2023) no. 8, pp. 1140-1152. http://geodesic.mathdoc.fr/item/SM_2023_214_8_a5/

[1] C. Bonatti, V. Grines and O. Pochinka, “Topological classification of Morse-Smale diffeomorphisms on 3-manifolds”, Duke Math. J., 168:13 (2019), 2507–2558 | DOI | MR | Zbl

[2] P. Kirk and C. Livingston, “Knot invariants in 3-manifolds and essential tori”, Pacific J. Math., 197:1 (2001), 73–96 | DOI | MR | Zbl

[3] P. M. Akhmet'ev, T. V. Medvedev and O. V. Pochinka, “On the number of the classes of topological conjugacy of Pixton diffeomorphisms”, Qual. Theory Dyn. Syst., 20:3 (2021), 76, 15 pp. | DOI | MR | Zbl

[4] B. Mazur, “A note on some contractible 4-manifolds”, Ann. of Math. (2), 73:1 (1961), 221–228 | DOI | MR | Zbl

[5] C. Bonatti and V. Z. Grines, “Knots as topological invariants for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dynam. Control Systems, 6:4 (2000), 579–602 | DOI | MR | Zbl

[6] D. Pixton, “Wild unstable manifolds”, Topology, 16:2 (1977), 167–172 | DOI | MR | Zbl

[7] V. Z. Grines, E. V. Zhuzhoma and V. S. Medvedev, “On Morse-Smale diffeomorphisms with four periodic points on closed orientable manifolds”, Math. Notes, 74:3 (2003), 352–366 | DOI | DOI | MR | Zbl

[8] V. S. Afraimovich, M. I. Rabinovich and P. Varona, “Heteroclinic contours in neural ensembles and the winnerless competition principle”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14:4 (2004), 1195–1208 | DOI | MR | Zbl

[9] V. Z. Grines, T. V. Medvedev and O. V. Pochinka, Dynamical systems on 2- and 3-manifolds, Dev. Math., 46, Springer, Cham, 2016, xxvi+295 pp. | DOI | MR | Zbl

[10] V. Shmukler and O. Pochinka, “Bifurcations that change the type of heteroclinic curves of the Morse-Smale 3-diffeomorphism”, Tavricheskij vestnik informatiki i matematiki, 50:1 (2021), 101–114 (Russian)

[11] T. V. Medvedev and O. V. Pochinka, “The wild Fox-Artin arc in invariant sets of dynamical systems”, Dyn. Syst., 33:4 (2018), 660-666 | DOI | MR | Zbl