Knot as a~complete invariant of a~Morse-Smale 3-diffeomorphism with four fixed points
Sbornik. Mathematics, Tome 214 (2023) no. 8, pp. 1140-1152

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that the topological conjugacy class of a Morse-Smale flows with unique saddle is defined by the equivalence class of the Hopf knot in $\mathbb S^2\times\mathbb S^1$ that is the projection of the one-dimensional saddle separatrix onto the basin of attraction of the nodal point, and the ambient manifold of a diffeomorphism in this class is the 3-sphere. In the present paper a similar result is obtained for gradient-like diffeomorphisms with exactly two saddle points and unique heteroclinic curve. Bibliography: 11 titles.
Keywords: gradient-like diffeomorphism, topological conjugacy, Morse-Smale diffeomorphism.
@article{SM_2023_214_8_a5,
     author = {O. V. Pochinka and E. A. Talanova and D. D. Shubin},
     title = {Knot as a~complete invariant of {a~Morse-Smale} 3-diffeomorphism with four fixed points},
     journal = {Sbornik. Mathematics},
     pages = {1140--1152},
     publisher = {mathdoc},
     volume = {214},
     number = {8},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_8_a5/}
}
TY  - JOUR
AU  - O. V. Pochinka
AU  - E. A. Talanova
AU  - D. D. Shubin
TI  - Knot as a~complete invariant of a~Morse-Smale 3-diffeomorphism with four fixed points
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 1140
EP  - 1152
VL  - 214
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_8_a5/
LA  - en
ID  - SM_2023_214_8_a5
ER  - 
%0 Journal Article
%A O. V. Pochinka
%A E. A. Talanova
%A D. D. Shubin
%T Knot as a~complete invariant of a~Morse-Smale 3-diffeomorphism with four fixed points
%J Sbornik. Mathematics
%D 2023
%P 1140-1152
%V 214
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2023_214_8_a5/
%G en
%F SM_2023_214_8_a5
O. V. Pochinka; E. A. Talanova; D. D. Shubin. Knot as a~complete invariant of a~Morse-Smale 3-diffeomorphism with four fixed points. Sbornik. Mathematics, Tome 214 (2023) no. 8, pp. 1140-1152. http://geodesic.mathdoc.fr/item/SM_2023_214_8_a5/