On the multiplicative Chung-Diaconis-Graham process
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 214 (2023) no. 6, pp. 878-895
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study the lazy Markov chain on $\mathbb{F}_p$ defined as follows: $X_{n+1}=X_n$ with probability $1/2$ and $X_{n+1}=f(X_n) \cdot \varepsilon_{n+1}$, where the $\varepsilon_n$ are random variables distributed uniformly on the set $\{\gamma, \gamma^{-1}\}$, $\gamma$ is a primitive root and $f(x)=x/(x-1)$ or $f(x)=\mathrm{ind}(x)$. Then we show that the mixing time of $X_n$ is $\exp(O(\log p \cdot \log \log \log p/ \log \log p))$. Also, we obtain an application to an additive-combinatorial question concerning a certain Sidon-type family of sets. 
Bibliography: 34 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Chung-Diaconis-Graham process, mixing time, incidence geometry
Mots-clés : Markov chains, Sidon sets.
                    
                  
                
                
                Mots-clés : Markov chains, Sidon sets.
@article{SM_2023_214_6_a5,
     author = {I. D. Shkredov},
     title = {On the multiplicative {Chung-Diaconis-Graham} process},
     journal = {Sbornik. Mathematics},
     pages = {878--895},
     publisher = {mathdoc},
     volume = {214},
     number = {6},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_6_a5/}
}
                      
                      
                    I. D. Shkredov. On the multiplicative Chung-Diaconis-Graham process. Sbornik. Mathematics, Tome 214 (2023) no. 6, pp. 878-895. http://geodesic.mathdoc.fr/item/SM_2023_214_6_a5/
