Mots-clés : hypercube
@article{SM_2023_214_3_a0,
author = {M. S. Alkousa and A. V. Gasnikov and E. L. Gladin and I. A. Kuruzov and D. A. Pasechnyuk and F. S. Stonyakin},
title = {Solving strongly convex-concave composite saddle-point problems with low dimension of one group of variable},
journal = {Sbornik. Mathematics},
pages = {285--333},
year = {2023},
volume = {214},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_3_a0/}
}
TY - JOUR AU - M. S. Alkousa AU - A. V. Gasnikov AU - E. L. Gladin AU - I. A. Kuruzov AU - D. A. Pasechnyuk AU - F. S. Stonyakin TI - Solving strongly convex-concave composite saddle-point problems with low dimension of one group of variable JO - Sbornik. Mathematics PY - 2023 SP - 285 EP - 333 VL - 214 IS - 3 UR - http://geodesic.mathdoc.fr/item/SM_2023_214_3_a0/ LA - en ID - SM_2023_214_3_a0 ER -
%0 Journal Article %A M. S. Alkousa %A A. V. Gasnikov %A E. L. Gladin %A I. A. Kuruzov %A D. A. Pasechnyuk %A F. S. Stonyakin %T Solving strongly convex-concave composite saddle-point problems with low dimension of one group of variable %J Sbornik. Mathematics %D 2023 %P 285-333 %V 214 %N 3 %U http://geodesic.mathdoc.fr/item/SM_2023_214_3_a0/ %G en %F SM_2023_214_3_a0
M. S. Alkousa; A. V. Gasnikov; E. L. Gladin; I. A. Kuruzov; D. A. Pasechnyuk; F. S. Stonyakin. Solving strongly convex-concave composite saddle-point problems with low dimension of one group of variable. Sbornik. Mathematics, Tome 214 (2023) no. 3, pp. 285-333. http://geodesic.mathdoc.fr/item/SM_2023_214_3_a0/
[1] M. S. Alkousa, A. V. Gasnikov, D. M. Dvinskikh, D. A. Kovalev and F. S. Stonyakin, “Accelerated methods for saddle-point problem”, Zh. Vychisl. Mat. Mat. Fiz., 60:11 (2020), 1843–1866 ; English transl. in Comput. Math. Math. Phys., 60:11 (2020), 1787–1809 | DOI | MR | Zbl | DOI
[2] W. Azizian, I. Mitliagkas, S. Lacoste-Julien and G. Gidel, “A tight and unified analysis of gradient-based methods for a whole spectrum of differentiable games”, Proceedings of the twenty third international conference on artificial intelligence and statistics, Proceedings of Machine Learning Research (PMLR), 108, 2020, 2863–2873, https://proceedings.mlr.press/v108/azizian20b.html
[3] A. V. Gasnikov, P. E. Dvurechensky and Yu. E. Nesterov, “Stochastic gradient methods with inexact oracle”, Tr. Mosk. Fiz. Tekhn. Inst., 8:1 (2016), 41–91 (Russian)
[4] A. V. Gasnikov, D. M. Dvinskikh, P. E. Dvurechensky, D. I. Kamzolov, V. V. Matyukhin, D. A. Pasechnyuk, N. K. Tupitsa and A. V. Chernov, “Accelerated meta-algorithm for convex optimization problems”, Zh. Vychisl. Mat. Mat. Fiz., 61:1 (2021), 20–31 ; English transl. in Comput. Math. Math. Phys., 61:1 (2021), 17–28 | DOI | Zbl | DOI | MR
[5] Le Thi Khanh Hien, Renbo Zhao and W. B. Haskell, An inexact primal-dual framework for large-scale non-bilinear saddle point problem, arXiv: 1711.03669
[6] Guanghui Lan, First-order and stochastic optimization methods for machine learning, Springer Ser. Data Sci., Springer, Cham, 2020, xiii+582 pp. | DOI | MR | Zbl
[7] Tianyi Lin, Chi Jin and M. I. Jordan, “Near-optimal algorithms for minimax optimization”, Proceedings of thirty third conference on learning theory, Proceedings of Machine Learning Research (PMLR), 125, 2020, 2738–2779, https://proceedings.mlr.press/v125/lin20a.html
[8] I. Usmanova, M. Kamgarpour, A. Krause and K. Levy, “Fast projection onto convex smooth constraints”, Proceedings of the 38th international conference on machine learning, Proceedings of Machine Learning Research (PMLR), 139, 2021, 10476–10486, http://proceedings.mlr.press/v139/usmanova21a.html
[9] Ђ. V. Gasnikov, Modern numerical methods of optimization. The method of universal gradient descent, 2ns revised ed., Moscow Center for Continuous Mathematical Education, Moscow, 2021, 272 pp. (Russian)
[10] B. Cox, A. Juditsky and A. Nemirovski, “Decomposition techniques for bilinear saddle point problems and variational inequalities with affine monotone operators”, J. Optim. Theory Appl., 172:2 (2017), 402–435 | DOI | MR | Zbl
[11] Yu. Nesterov, “Excessive gap technique in nonsmooth convex minimization”, SIAM J. Optim., 16:1 (2005), 235–249 | DOI | MR | Zbl
[12] Junyu Zhang, Mingyi Hong and Shuzhong Zhang, “On lower iteration complexity bounds for the convex concave saddle point problems”, Math. Program., 194:1–2, Ser. A (2022), 901–935 | DOI | MR | Zbl
[13] Yuanhao Wang and Jian Li, “Improved algorithms for convex-concave minimax optimization”, NIPS 2020, Adv. Neural Inf. Process. Syst., 33, MIT Press, Cambridge, MA, 2020, 11 pp. ; arXiv: http://proceedings.neurips.cc/paper/20202006.06359
[14] A. Nemirovski, S. Onn and U. G. Rothblum, “Accuracy certificates for computational problems with convex structure”, Math. Oper. Res., 35:1 (2010), 52–78 | DOI | MR | Zbl
[15] A. Nemirovski, Information-based complexity of convex programming, Lecture notes, 1995, 268 pp. https://www2.isye.gatech.edu/~nemirovs/Lec_EMCO.pdf
[16] D. A. Pasechnyuk and F. S. Stonyakin, “One method for minimization a convex Lipschitz-continuous function of two variables on a fixed square”, Komp'yuter. Issled. Modelirovanie, 11:3 (2019), 379–395 (Russian) | DOI
[17] B. T. Polyak, Introduction to optimization, Nauka, Moscow, 1983, 384 pp. ; English transl., Transl. Ser. Math. Eng., Optimization Software, Inc., Publications Division, New York, 1987, xxvii+438 pp. | MR | Zbl | MR
[18] O. Devolder, F. Glineur and Yu. Nesterov, “First-order methods of smooth convex optimization with inexact oracle”, Math. Program., 146:1–2, Ser. A (2014), 37–75 | DOI | MR | Zbl
[19] P. M. Vaidya, “A new algorithm for minimizing convex functions over convex sets”, Math. Program., 73:3, Ser. A (1996), 291–341 | DOI | MR | Zbl
[20] S. Bubeck, “Convex optimization: algorithms and complexity”, Found. Trends Mach. Learn., 8:3–4 (2015), 231–357 | Zbl
[21] E. Gladin, A. Sadiev, A. Gasnikov, P. Dvurechensky, A. Beznosikov and M. Alkousa, “Solving smooth min-min and min-max problems by mixed oracle algorithms”, MOTOR 2021: Mathematical optimization theory and operations research — recent trends, Commun. Comput. Inf. Sci., 1476, Springer, Cham, 2021, 19–40 | DOI | MR
[22] A. V. Gasnikov and Yu. E. Nesterov, “Universal method for stochastic composite optimization problems”, Zh. Vychisl. Mat. Mat. Fiz., 58:1 (2018), 52–69 ; English transl. in Comput. Math. Math. Phys., 58:1 (2018), 48–64 | DOI | Zbl | DOI | MR
[23] J. M. Danskin, “The theory of Max-Min, with applications”, SIAM J. Appl. Math., 14:4 (1966), 641–664 | DOI | MR | Zbl
[24] O. Devolder, Exactness, inexactness and stochasticity in first-order methods for large-scale convex optimization, PhD thesis, UCL, CORE, Louvain-la-Neuve, 2013, vii+309 pp. https://dial.uclouvain.be/pr/boreal/en/object/boreal
[25] O. Devolder, F. Glineur and Yu. Nesterov, First-order methods with inexact oracle: the strongly convex case, CORE Discussion Papers, no. 2013/16, 2013, 35 pp. http://www.uclouvain.be/cps/ucl/doc/core/documents/coredp2013_16web.pdf
[26] N. Z. Shor, Minimization methods for non-differentiable functions, Naukova dumka, Kiev, 1979, 199 pp. ; English transl., Springer Ser. Comput. Math., 3, Springer-Verlag, Berlin, 1985, viii+162 pp. | MR | Zbl | DOI | MR | Zbl
[27] Source code for experiments on GitHub, https://github.com/ASEDOS999/SPP
[28] P. Bernhard and A. Rapaport, “On a theorem of Danskin with an application to a theorem of von Neumann-Sion”, Nonlinear Anal., 24:8 (1995), 1163–1181 | DOI | MR | Zbl