@article{SM_2023_214_2_a6,
author = {N. A. Kuz'min and D. S. Malyshev},
title = {On diameter~$5$ trees with the maximum number of matchings},
journal = {Sbornik. Mathematics},
pages = {273--284},
year = {2023},
volume = {214},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_2_a6/}
}
N. A. Kuz'min; D. S. Malyshev. On diameter $5$ trees with the maximum number of matchings. Sbornik. Mathematics, Tome 214 (2023) no. 2, pp. 273-284. http://geodesic.mathdoc.fr/item/SM_2023_214_2_a6/
[1] H. Hosoya, “Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons”, Bull. Chem. Soc. Japan, 44:9 (1971), 2332–2339 | DOI
[2] H. Hosoya, “The topological index $Z$ before and after 1971”, Internet Electron. J. Mol. Des., 1:9 (2002), 428–442
[3] H. Hosoya, “Important mathematical structures of the topological index $Z$ for tree graphs”, J. Chem. Inf. Model., 47:3 (2007), 744–750 | DOI
[4] H. Hosoya, “Mathematical meaning and importance of the topological index $Z$”, Croat. Chem. Acta, 80:2 (2007), 239–249
[5] N. A. Kuz'min, “Trees of radius 2 with the maximum number of matchings”, Zh. Srednevolzhsk. Mat. Obshch., 22:2 (2020), 177–187 (Russian) | DOI
[6] N. A. Kuz'min and D. S. Malyshev, “A new proof of a result concerning a complete description of $(n, n + 2)$-graphs with maximum value of the Hosoya index”, Mat. Zametki, 111:2 (2022), 258–276 ; English transl. in Math. Notes, 111:2 (2022), 258–272 | DOI | MR | Zbl | DOI