On the sharp Baer-Suzuki theorem for the $\pi$-radical of a~finite group
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 214 (2023) no. 1, pp. 108-147
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\pi$ be a proper subset of the set of prime numbers. Denote by $r$ the least prime not contained in $\pi$ and set $m=r$ for $r=2$ and $3$ and $m=r-1$ for $r\geqslant5$. The conjecture under consideration claims that a conjugacy class $D$ of a finite group $G$ generates a $\pi$-subgroup of $G$ (equivalently, is contained in the $\pi$-radical) if and only if any $m$ elements of $D$ generate a $\pi$-group. It is shown that this conjecture holds if every non-Abelian composition factor of $G$ is isomorphic to a sporadic, an alternating, a linear, or a unitary simple group. 
Bibliography: 49 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
simple linear groups, simple unitary groups, $\pi$-radical of a group, Baer-Suzuki $\pi$-theorem.
                    
                    
                    
                  
                
                
                @article{SM_2023_214_1_a4,
     author = {N. Yang and Zh. Wu and D. O. Revin and E. P. Vdovin},
     title = {On the sharp {Baer-Suzuki} theorem for the $\pi$-radical of a~finite group},
     journal = {Sbornik. Mathematics},
     pages = {108--147},
     publisher = {mathdoc},
     volume = {214},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_1_a4/}
}
                      
                      
                    TY - JOUR AU - N. Yang AU - Zh. Wu AU - D. O. Revin AU - E. P. Vdovin TI - On the sharp Baer-Suzuki theorem for the $\pi$-radical of a~finite group JO - Sbornik. Mathematics PY - 2023 SP - 108 EP - 147 VL - 214 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2023_214_1_a4/ LA - en ID - SM_2023_214_1_a4 ER -
N. Yang; Zh. Wu; D. O. Revin; E. P. Vdovin. On the sharp Baer-Suzuki theorem for the $\pi$-radical of a~finite group. Sbornik. Mathematics, Tome 214 (2023) no. 1, pp. 108-147. http://geodesic.mathdoc.fr/item/SM_2023_214_1_a4/
