@article{SM_2023_214_1_a4,
author = {N. Yang and Zh. Wu and D. O. Revin and E. P. Vdovin},
title = {On the sharp {Baer-Suzuki} theorem for the $\pi$-radical of a~finite group},
journal = {Sbornik. Mathematics},
pages = {108--147},
year = {2023},
volume = {214},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_1_a4/}
}
TY - JOUR AU - N. Yang AU - Zh. Wu AU - D. O. Revin AU - E. P. Vdovin TI - On the sharp Baer-Suzuki theorem for the $\pi$-radical of a finite group JO - Sbornik. Mathematics PY - 2023 SP - 108 EP - 147 VL - 214 IS - 1 UR - http://geodesic.mathdoc.fr/item/SM_2023_214_1_a4/ LA - en ID - SM_2023_214_1_a4 ER -
N. Yang; Zh. Wu; D. O. Revin; E. P. Vdovin. On the sharp Baer-Suzuki theorem for the $\pi$-radical of a finite group. Sbornik. Mathematics, Tome 214 (2023) no. 1, pp. 108-147. http://geodesic.mathdoc.fr/item/SM_2023_214_1_a4/
[1] M. Aschbacher, Finite group theory, Cambridge Stud. Adv. Math., 10, Corr. reprint of the 1986 original, Cambridge Univ. Press, Cambridge, 1993, x+274 pp. | MR | Zbl
[2] K. Doerk and T. O. Hawkes, Finite soluble groups, De Gruyter Exp. Math., 4, Walter de Gruyter Co., Berlin, 1992, xiv+891 pp. | DOI | MR | Zbl
[3] D. Gorenstein, Finite groups, 2nd ed., Chelsea Publishing Co., New York, 1980, xvii+519 pp. | MR | Zbl
[4] I. M. Isaacs, Finite group theory, Grad. Stud. Math., 92, Amer. Math. Soc., Providence, RI, 2008, xii+350 pp. | DOI | MR | Zbl
[5] H. Kurzweil and B. Stellmacher, The theory of finite groups. An introduction, Universitext, Springer-Verlag, New York, 2004, xii+387 pp. | DOI | MR | Zbl
[6] R. Baer, “Engelsche Elemente Noetherscher Gruppen”, Math. Ann., 133 (1957), 256–270 | DOI | MR | Zbl
[7] M. Suzuki, “Finite groups in which the centralizer of any element of order 2 is 2-closed”, Ann. of Math. (2), 82 (1965), 191–212 | DOI | MR | Zbl
[8] J. Alperin and R. Lyons, “On conjugacy classes of $p$-elements”, J. Algebra, 19:2 (1971), 536–537 | DOI | MR | Zbl
[9] H. Wielandt, “Kriterien für Subnormalität in endlichen Gruppen”, Math. Z., 138 (1974), 199–203 | DOI | MR | Zbl
[10] R. Solomon, “A brief history of the classification of the finite simple groups”, Bull. Amer. Math. Soc. (N.S.), 38:3 (2001), 315–352 | DOI | MR | Zbl
[11] F. Timmesfeld, “Groups generated by a conjugacy class of involutions”, The Santa Cruz conference on finite groups (Univ. California, Santa Cruz, CA 1979), Proc. Sympos. Pure Math., 37, Amer. Math. Soc., Providence, RI, 1980, 103–109 | DOI | MR | Zbl
[12] P. Flavell, S. Guest and R. Guralnick, “Characterizations of the solvable radical”, Proc. Amer. Math. Soc., 138:4 (2010), 1161–1170 | DOI | MR | Zbl
[13] F. Fumagalli and G. Malle, “A generalisation of a theorem of Wielandt”, J. Algebra, 490 (2017), 474–492 | DOI | MR | Zbl
[14] N. Gordeev, F. Grunewald, B. Kunyavskii and E. Plotkin, “A description of Baer-Suzuki type of the solvable radical of a finite group”, J. Pure Appl. Algebra, 213:2 (2009), 250–258 | DOI | MR | Zbl
[15] N. Gordeev, F. Grunewald, B. Kunyavskii and E. Plotkin, “Baer-Suzuki theorem for the solvable radical of a finite group”, C. R. Math. Acad. Sci. Paris, 347:5–6 (2009), 217–222 | DOI | MR | Zbl
[16] N. Gordeev, F. Grunewald, B. Kunyavskii and E. Plotkin, “From Thompson to Baer-Suzuki: a sharp characterization of the solvable radical”, J. Algebra, 323:10 (2010), 2888–2904 | DOI | MR | Zbl
[17] S. Guest, “A solvable version of the Baer-Suzuki theorem”, Trans. Amer. Math. Soc., 362:11 (2010), 5909–5946 | DOI | MR | Zbl
[18] R. Guralnick and G. Malle, “Variations on the Baer-Suzuki theorem”, Math. Z., 279:3–4 (2015), 981–1006 | DOI | MR | Zbl
[19] R. M. Guralnick and G. R. Robinson, “On extensions of the Baer-Suzuki theorem”, Israel J. Math., 82:1–3 (1993), 281–297 | DOI | MR | Zbl
[20] V. D. Mazurov, A. Yu. Ol'shanskii and A. I. Sozutov, “Infinite groups of finite period”, Algebra i Logika, 54:2 (2015), 243–251 ; English transl. in Algebra and Logic, 54:2 (2015), 161–166 | DOI | MR | Zbl | DOI
[21] A. S. Mamontov, “An analog of the Baer-Suzuki theorem for infinite groups”, Sibirsk. Mat. Zh., 45:2 (2004), 394–398 ; English transl. in Siberian Math. J., 45:2 (2004), 327–330 | MR | Zbl | DOI
[22] A. S. Mamontov, “The Baer-Suzuki theorem for groups of $2$-exponent $4$”, Algebra i Logika, 53:5 (2014), 649–652 ; English transl. in Algebra and Logic, 53:5 (2014), 422–424 | MR | Zbl | DOI
[23] È. M. Pal'chik, “On generations by pairs of conjugate elements in finite groups”, Dokl. Nats. Akad. Nauk Belarusi, 55:4 (2011), 19–20 (Russian) | MR | Zbl
[24] D. O. Revin, “On Baer-Suzuki $\pi$-theorems”, Sibirsk. Mat. Zh., 52:2 (2011), 430–440 ; English transl. in Siberian Math. J., 52:2 (2011), 340–347 | MR | Zbl | DOI
[25] D. O. Revin, “On a relation between the Sylow and Baer-Suzuki theorems”, Sibirsk. Mat. Zh., 52:5 (2011), 1138–1149 ; English transl. in Siberian Math. J., 52:5 (2011), 904–913 | MR | Zbl | DOI
[26] A. I. Sozutov, “On a generalization of the Baer-Suzuki theorem”, Sibirsk. Mat. Zh., 41:3 (2000), 674–675 ; English transl. in Siberian Math. J., 41:3 (2000), 561–562 | MR | Zbl | DOI
[27] F. G. Timmesfeld, “A remark on a theorem of Baer”, Arch. Math. (Basel), 54:1 (1990), 1–3 | DOI | MR | Zbl
[28] V. N. Tyutyanov, “On the existence of solvable normal subgroups in finite groups”, Mat. Zametki, 61:5 (1997), 755–758 ; English transl. in Math. Notes, 61:5 (1997), 632–634 | DOI | MR | Zbl | DOI
[29] V. N. Tyutyanov, “A criterion of non-simplicity for a finite group”, Izv. Gomel'sk. Gos. Univ. Voprosy Alg., 16:3 (2000), 125–137 (Russian)
[30] M. L. Sylow, “Théorèmes sur les groupes de substitutions”, Math. Ann., 5:4 (1872), 584–594 | DOI | MR | Zbl
[31] P. Hall, “A note on soluble groups”, J. London Math. Soc., 3:2 (1928), 98–105 | DOI | MR | Zbl
[32] Nanying Yang, D. O. Revin and E. P. Vdovin, “Baer-Suzuki theorem for the $\pi$-radical”, Israel J. Math., 245:1 (2021), 173–207 ; arXiv: 1911.11939 | DOI | MR | Zbl
[33] R. M. Guralnick and J. Saxl, “Generation of finite almost simple groups by conjugates”, J. Algebra, 268:2 (2003), 519–571 | DOI | MR | Zbl
[34] N. Yang, Zh. Wu and D. O. Revin, “On the sharp Baer-Suzuki theorem for the $\pi$-radical: sporadic groups”, Sibirsk. Mat. Zh., 63:2 (2022), 464–472 ; English transl. in Siberian Math. J., 63:2 (2022), 387–394 | DOI | Zbl | DOI | MR
[35] I. M. Isaacs, Character theory of finite groups, Pure Appl. Math., 69, Academic Press [Harcourt Brace Jovanovich, Publishers], New York–London, 1976, xii+303 pp. | MR | Zbl
[36] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of finite groups. Maximal subgroups and ordinary characters for simple groups, Clarendon Press, Oxford, 1985, xxxiv+252 pp. | MR | Zbl
[37] S. Guest and D. Levy, “Criteria for solvable radical membership via $p$-elements”, J. Algebra, 415 (2014), 88–111 | DOI | MR | Zbl
[38] P. Kleidman and M. Liebeck, The subgroup structure of the finite classical groups, London Math. Soc. Lecture Note Ser., 129, Cambridge Univ. Press, Cambridge, 1990, x+303 pp. | DOI | MR | Zbl
[39] D. Gorenstein, R. Lyons and R. Solomon, The classification of the finite simple groups. Number 3. Part I. Chapter A. Almost simple $K$-groups, Math. Surveys Monogr., 40.3, Amer. Math. Soc., Providence, RI, 1998, xvi+419 pp. | DOI | MR | Zbl
[40] R. W. Carter, Simple groups of Lie type, Pure Appl. Math., 28, John Wiley Sons, London–New York–Sydney, 1972, viii+331 pp. | MR | Zbl
[41] S. Gonshaw, M. W. Liebeck and E. A. O'Brien, “Unipotent class representatives for finite classical groups”, J. Group Theory, 20:3 (2017), 505–525 | DOI | MR | Zbl
[42] B. N. Cooperstein, “Minimal degree for a permutation representation of a classical group”, Israel J. Math., 30:3 (1978), 213–235 | DOI | MR | Zbl
[43] W. M. Kantor, “Subgroups of classical groups generated by long root elements”, Trans. Amer. Math. Soc., 248:2 (1979), 347–379 | DOI | MR | Zbl
[44] J. McLaughlin, “Some groups generated by transvections”, Arch. Math. (Basel), 18 (1967), 364–368 | DOI | MR | Zbl
[45] J. McLaughlin, “Some subgroups of $SL_n(\mathbf{F}_2)$”, Illinois J. Math., 13:1 (1969), 108–115 | DOI | MR | Zbl
[46] M. W. Liebeck and J. Saxl, “Minimal degrees of primitive permutation group, with an application to monodromy groups of covers of Riemann surfaces”, Proc. London Math. Soc. (3), 63:2 (1991), 266–314 | DOI | MR | Zbl
[47] M. W. Liebeck, “The classification of finite simple Moufang loops”, Math. Proc. Cambridge Philos. Soc., 102:1 (1987), 33–47 | DOI | MR | Zbl
[48] G. Glauberman, Factorizations in local subgroups of finite groups, Reg. Conf. Ser. Math., 33, Amer. Math. Soc., Providence, RI, 1976, ix+74 pp. | MR | Zbl
[49] GAP — Groups, Algorithms, Programming — a system for computational discrete algebra, Version 4.11.1, 2019 https://www.gap-system.org