On the sharp Baer-Suzuki theorem for the $\pi$-radical of a~finite group
Sbornik. Mathematics, Tome 214 (2023) no. 1, pp. 108-147

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\pi$ be a proper subset of the set of prime numbers. Denote by $r$ the least prime not contained in $\pi$ and set $m=r$ for $r=2$ and $3$ and $m=r-1$ for $r\geqslant5$. The conjecture under consideration claims that a conjugacy class $D$ of a finite group $G$ generates a $\pi$-subgroup of $G$ (equivalently, is contained in the $\pi$-radical) if and only if any $m$ elements of $D$ generate a $\pi$-group. It is shown that this conjecture holds if every non-Abelian composition factor of $G$ is isomorphic to a sporadic, an alternating, a linear, or a unitary simple group. Bibliography: 49 titles.
Keywords: simple linear groups, simple unitary groups, $\pi$-radical of a group, Baer-Suzuki $\pi$-theorem.
@article{SM_2023_214_1_a4,
     author = {N. Yang and Zh. Wu and D. O. Revin and E. P. Vdovin},
     title = {On the sharp {Baer-Suzuki} theorem for the $\pi$-radical of a~finite group},
     journal = {Sbornik. Mathematics},
     pages = {108--147},
     publisher = {mathdoc},
     volume = {214},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_1_a4/}
}
TY  - JOUR
AU  - N. Yang
AU  - Zh. Wu
AU  - D. O. Revin
AU  - E. P. Vdovin
TI  - On the sharp Baer-Suzuki theorem for the $\pi$-radical of a~finite group
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 108
EP  - 147
VL  - 214
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_1_a4/
LA  - en
ID  - SM_2023_214_1_a4
ER  - 
%0 Journal Article
%A N. Yang
%A Zh. Wu
%A D. O. Revin
%A E. P. Vdovin
%T On the sharp Baer-Suzuki theorem for the $\pi$-radical of a~finite group
%J Sbornik. Mathematics
%D 2023
%P 108-147
%V 214
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2023_214_1_a4/
%G en
%F SM_2023_214_1_a4
N. Yang; Zh. Wu; D. O. Revin; E. P. Vdovin. On the sharp Baer-Suzuki theorem for the $\pi$-radical of a~finite group. Sbornik. Mathematics, Tome 214 (2023) no. 1, pp. 108-147. http://geodesic.mathdoc.fr/item/SM_2023_214_1_a4/