Dense weakly lacunary subsystems of orthogonal systems and maximal partial sum operator
Sbornik. Mathematics, Tome 214 (2023) no. 11, pp. 1560-1584 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that any finite orthogonal system of functions whose norms in $L_p$ are bounded by 1, where $p>2$, has a sufficiently dense subsystem with lacunarity property in the Orlicz space. The norm of the maximal partial sum operator for this subsystem has a better estimate than it is guaranteed by the classical Menshov-Rademacher theorem for general orthogonal systems. Bibliography: 17 titles.
Keywords: lacunary subsystems, maximal partial sum operator, Orlicz space
@article{SM_2023_214_11_a2,
     author = {I. V. Limonova},
     title = {Dense weakly lacunary subsystems of orthogonal systems and maximal partial sum operator},
     journal = {Sbornik. Mathematics},
     pages = {1560--1584},
     year = {2023},
     volume = {214},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_11_a2/}
}
TY  - JOUR
AU  - I. V. Limonova
TI  - Dense weakly lacunary subsystems of orthogonal systems and maximal partial sum operator
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 1560
EP  - 1584
VL  - 214
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_11_a2/
LA  - en
ID  - SM_2023_214_11_a2
ER  - 
%0 Journal Article
%A I. V. Limonova
%T Dense weakly lacunary subsystems of orthogonal systems and maximal partial sum operator
%J Sbornik. Mathematics
%D 2023
%P 1560-1584
%V 214
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2023_214_11_a2/
%G en
%F SM_2023_214_11_a2
I. V. Limonova. Dense weakly lacunary subsystems of orthogonal systems and maximal partial sum operator. Sbornik. Mathematics, Tome 214 (2023) no. 11, pp. 1560-1584. http://geodesic.mathdoc.fr/item/SM_2023_214_11_a2/

[1] I. Agaev, “Lacunary subsets of orthonormal sets”, Anal. Math., 11:4 (1985), 283–301 | DOI | MR | Zbl

[2] T. O. Balykbaev, “On a class of lacunary orthonormal systems”, Soviet Math. Dokl., 33 (1986), 267–269 | MR | Zbl

[3] T. O. Balykbaev, A class of lacunary trigonometric systems, Kandidat Dissertation, Moscow State University, Moscow, 1986, 67 pp. (Russian)

[4] S. Banach, “Sur les séries lacunaires”, Bull. Int. Acad. Pol. Sci. Lett. Cl. Sci. Math. Nat. Ser. A Sci. Math., 1933 (1933), 149–154 | Zbl

[5] J. Bourgain, “Bounded orthogonal systems and the $\Lambda(p)$-set problem”, Acta Math., 162:3–4 (1989), 227–245 | DOI | MR | Zbl

[6] J. Bourgain, “On Kolmogorov's rearrangement problem for orthogonal systems and Garsia's conjecture”, Geometric aspects of functional analysis, Israel seminar (GAFA) (1987–88), Lecture Notes in Math., 1376, Springer-Verlag, Berlin, 1989, 209–250 | DOI | MR | Zbl

[7] V. F. Gaposhkin, “Lacunary series and independent functions”, Russian Math. Surveys, 21:6 (1966), 1–82 | DOI | MR | Zbl

[8] O. Guédon, S. Mendelson, A. Pajor and N. Tomczak-Jaegermann, “Subspaces and orthogonal decompositions generated by bounded orthogonal systems”, Positivity, 11:2 (2007), 269–283 | DOI | MR | Zbl

[9] S. Kaczmarz and H. Steinhaus, Theorie der Orthogonalreihen, Monogr. Mat., 6, Subwencji funduszu kultury narodowej, Warszawa–Lwow, 1935, vi+298 pp. | MR | Zbl

[10] G. A. Karagulyan, “On the selection of a convergence subsystem with logarithmic density from an arbitrary orthonormal system”, Math. USSR-Sb., 64:1 (1989), 41–56 | DOI | MR | Zbl

[11] B. S. Kašin (Kashin), “On unconditional convergence in the space $L_1$”, Math. USSR-Sb., 23:4 (1974), 509–519 | DOI | MR | Zbl

[12] B. S. Kashin and I. V. Limonova, “Selecting a dense weakly lacunary subsystem in a bounded orthonormal system”, Russian Math. Surveys, 74:5 (2019), 956–958 | DOI | MR | Zbl

[13] B. S. Kashin and I. V. Limonova, “Weakly lacunary orthogonal systems and properties of the maximal partial sum operator for subsystems”, Proc. Steklov Inst. Math., 311 (2020), 152–170 | DOI | MR | Zbl

[14] B. S. Kashin and A. A. Saakyan, Orthogonal series, 2nd augmented ed., Actuarial and Foinancial Center, Moscow, 1999, x+550 pp. ; English transl. of 1st ed., Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989, xii+451 pp. | MR | Zbl | DOI | MR | Zbl

[15] I. V. Limonova, “Existence of dense subsystems with lacunarity property in orthogonal systems”, Russian Math. Surveys, 77:5 (2022), 952–954 | DOI | MR | Zbl

[16] I. V. Limonova, Restrictions of operators to coordinate subspaces and discretization theorems, Kandidat Dissertation, Moscow State University, Moscow, 2022, 81 pp. (Russian) https://www.mi-ras.ru/dis/ref22/limonova/dis.pdf

[17] M. Talagrand, “Sections of smooth convex bodies via majorizing measures”, Acta Math., 175:2 (1995), 273–300 | DOI | MR | Zbl