Dense weakly lacunary subsystems of orthogonal systems and maximal partial sum operator
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 214 (2023) no. 11, pp. 1560-1584
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is shown that any finite orthogonal system of functions whose norms in $L_p$ are bounded by 1, where $p>2$, has a sufficiently dense subsystem with lacunarity property in the Orlicz space. The norm of the maximal partial sum operator for this subsystem has a better estimate than it is guaranteed by the classical Menshov-Rademacher theorem for general orthogonal systems. 
Bibliography: 17 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
lacunary subsystems, maximal partial sum operator, Orlicz space
                    
                    
                    
                  
                
                
                @article{SM_2023_214_11_a2,
     author = {I. V. Limonova},
     title = {Dense weakly lacunary subsystems of orthogonal systems and maximal partial sum operator},
     journal = {Sbornik. Mathematics},
     pages = {1560--1584},
     publisher = {mathdoc},
     volume = {214},
     number = {11},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_11_a2/}
}
                      
                      
                    TY - JOUR AU - I. V. Limonova TI - Dense weakly lacunary subsystems of orthogonal systems and maximal partial sum operator JO - Sbornik. Mathematics PY - 2023 SP - 1560 EP - 1584 VL - 214 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2023_214_11_a2/ LA - en ID - SM_2023_214_11_a2 ER -
I. V. Limonova. Dense weakly lacunary subsystems of orthogonal systems and maximal partial sum operator. Sbornik. Mathematics, Tome 214 (2023) no. 11, pp. 1560-1584. http://geodesic.mathdoc.fr/item/SM_2023_214_11_a2/
