Dense weakly lacunary subsystems of orthogonal systems and maximal partial sum operator
Sbornik. Mathematics, Tome 214 (2023) no. 11, pp. 1560-1584

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that any finite orthogonal system of functions whose norms in $L_p$ are bounded by 1, where $p>2$, has a sufficiently dense subsystem with lacunarity property in the Orlicz space. The norm of the maximal partial sum operator for this subsystem has a better estimate than it is guaranteed by the classical Menshov-Rademacher theorem for general orthogonal systems. Bibliography: 17 titles.
Keywords: lacunary subsystems, maximal partial sum operator, Orlicz space
@article{SM_2023_214_11_a2,
     author = {I. V. Limonova},
     title = {Dense weakly lacunary subsystems of orthogonal systems and maximal partial sum operator},
     journal = {Sbornik. Mathematics},
     pages = {1560--1584},
     publisher = {mathdoc},
     volume = {214},
     number = {11},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_11_a2/}
}
TY  - JOUR
AU  - I. V. Limonova
TI  - Dense weakly lacunary subsystems of orthogonal systems and maximal partial sum operator
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 1560
EP  - 1584
VL  - 214
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_11_a2/
LA  - en
ID  - SM_2023_214_11_a2
ER  - 
%0 Journal Article
%A I. V. Limonova
%T Dense weakly lacunary subsystems of orthogonal systems and maximal partial sum operator
%J Sbornik. Mathematics
%D 2023
%P 1560-1584
%V 214
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2023_214_11_a2/
%G en
%F SM_2023_214_11_a2
I. V. Limonova. Dense weakly lacunary subsystems of orthogonal systems and maximal partial sum operator. Sbornik. Mathematics, Tome 214 (2023) no. 11, pp. 1560-1584. http://geodesic.mathdoc.fr/item/SM_2023_214_11_a2/