Representation of invariant subspaces of the Schwartz space
Sbornik. Mathematics, Tome 213 (2022) no. 8, pp. 1020-1040 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A subspace $W$ of the Schwartz space $C^{\infty} (a,b)$ such that the restriction of the operator of differentiation to $W$ has a discrete spectrum is considered. Conditions for the representation of $W$ as a direct algebraic and topological sum of two subspaces, namely, the residual subspace and the subspace spanned by the exponential monomials from $W$, are investigated. One condition ensuring this representation turns out to be the existence of a functional annihilating $W$ such that the Fourier-Laplace transform of this functional is a slowly decreasing entire function. A new characteristic of complex sequences is introduced and investigated. Using this characteristic, the condition that an invariant subspace is equal to the direct sum of its residual and exponential subspaces can be put into a form that is similar to the previously discovered conditions for the possibility of weak spectral synthesis. Bibliography: 19 titles.
Keywords: invariant subspace, spectral synthesis, slowly decreasing entire function, Schwartz spaces.
Mots-clés : Fourier-Laplace transform
@article{SM_2022_213_8_a0,
     author = {N. F. Abuzyarova},
     title = {Representation of invariant subspaces of the {Schwartz} space},
     journal = {Sbornik. Mathematics},
     pages = {1020--1040},
     year = {2022},
     volume = {213},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_8_a0/}
}
TY  - JOUR
AU  - N. F. Abuzyarova
TI  - Representation of invariant subspaces of the Schwartz space
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 1020
EP  - 1040
VL  - 213
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_8_a0/
LA  - en
ID  - SM_2022_213_8_a0
ER  - 
%0 Journal Article
%A N. F. Abuzyarova
%T Representation of invariant subspaces of the Schwartz space
%J Sbornik. Mathematics
%D 2022
%P 1020-1040
%V 213
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2022_213_8_a0/
%G en
%F SM_2022_213_8_a0
N. F. Abuzyarova. Representation of invariant subspaces of the Schwartz space. Sbornik. Mathematics, Tome 213 (2022) no. 8, pp. 1020-1040. http://geodesic.mathdoc.fr/item/SM_2022_213_8_a0/

[1] A. Aleman and B. Korenblum, “Derivation-invariant subspaces of $C^{\infty}$”, Comput. Methods Funct. Theory, 8:1–2 (2008), 493–512 | DOI | MR | Zbl

[2] N. F. Abuzyarova, “Spectral synthesis in the Schwartz space of infinitely differentiable functions”, Dokl. Ross. Akad. Nauk, 457:5 (2014), 510–513 ; English transl. in Dokl. Math., 90:1 (2014), 479–482 | MR | Zbl | DOI

[3] N. F. Abuzyarova, “Spectral synthesis for the differentiation operator in the Schwartz space”, Mat. Zametki, 102:2 (2017), 163–177 ; English transl. in Math. Notes, 102:2 (2017), 137–148 | DOI | MR | Zbl | DOI

[4] A. Aleman, A. Baranov and Yu. Belov, “Subspaces of $C^{\infty}$ invariant under the differentiation”, J. Funct. Anal., 268:8 (2015), 2421–2439 | DOI | MR | Zbl

[5] N. F. Abuzyarova, “Representation of synthesizable differentiation-invariant subspaces of the Schwartz space”, Dokl. Ross. Akad. Nauk Mat. Inform. Protsessy Upr., 498 (2021), 5–9 ; English transl. in Dokl. Math., 103:3 (2021), 99–102 | DOI | Zbl | DOI

[6] J. Sebastião e Silva, “Su certe classi di spazi localmente convessi importanti per le applicazioni”, Rend. Mat. e Appl. (5), 14 (1955), 388–410 | MR | Zbl

[7] L. Hörmander, The analysis of linear partial differential operators, v. I, Grundlehren Math. Wiss., 256, Distribution theory and Fourier analysis, Springer-Verlag, Berlin, 1983, ix+391 pp. | DOI | MR | Zbl

[8] N. F. Abuzyarova, “Closed submodules in the module of entire functions of exponential type and polynomial growth on the real axis”, Ufim. Mat. Zh., 6:4 (2014), 3–18 ; English transl. in Ufa Math. J., 6:4 (2014), 3–17 | Zbl | DOI | MR

[9] P. Koosis, The logarithmic integral, v. II, Cambridge Stud. Adv. Math., 21, Cambridge Univ. Press, Cambridge, 1992, xxvi+574 pp. | DOI | MR | Zbl

[10] L. Ehrenpreis, “Solution of some problems of division. IV. Invertible and elliptic operators”, Amer. J. Math., 82:3 (1960), 522–588 | DOI | MR | Zbl

[11] C. A. Berenstein and B. A. Taylor, “A new look at interpolation theory for entire functions of one variable”, Adv. Math., 33:2 (1979), 109–143 | DOI | MR | Zbl

[12] A. M. Sedletskii, “On functions periodic in the mean”, Izv. Akad. Nauk SSSR Ser. Mat., 34:6 (1970), 1391–1415 ; English transl. in Izv. Math., 4:6 (1970), 1406–1428 | MR | Zbl | DOI

[13] A. F. Leont'ev, “Properties of sequences of Dirichlet polynomials which are convergent on an interval of the imaginary axis”, Izv. Akad. Nauk SSSR Ser. Mat., 29:2 (1965), 269–328 (Russian) | MR | Zbl

[14] J. Diedonné and L. Schwartz, “La dualité dans les espaces $(\mathscr F)$ et $(\mathscr{LF})$”, Ann. Inst. Fourier (Grenoble), 1 (1950), 61–101 | DOI | MR | Zbl

[15] R. P. Boas, Jr., Entire functions, Academic Press Inc., New York, 1954, x+276 pp. | MR | Zbl

[16] V. S. Vladimirov, Generalized functions in mathematical physics, 2nd ed., Nauka, Moscow, 1979, 319 pp. ; English transl., Mir, Moscow, 1979, xii+362 pp. | MR | Zbl | MR | Zbl

[17] L. Hörmander, An introduction to complex analysis in several variables, D. Van Nostrand Co., Inc., Princeton, NJ–Toronto, ON–London, 1966, x+208 pp. | MR | Zbl

[18] N. F. Abuzyarova, “Some properties of principal submodules in the module of entire functions of exponential type and polynomial growth on the real axis”, Ufim. Mat. Zh., 8:1 (2016), 3–14 ; English transl. in Ufa Math. J., 8:1 (2016), 1–12 | DOI | MR

[19] N. F. Abuzyarova, “On conditions of invertibility in the sense of Ehrenpreis in the Schwartz algebra”, Lobachevskii J. Math., 42:6 (2021), 1141–1153 | DOI | MR | Zbl