Mots-clés : Fourier-Laplace transform
@article{SM_2022_213_8_a0,
author = {N. F. Abuzyarova},
title = {Representation of invariant subspaces of the {Schwartz} space},
journal = {Sbornik. Mathematics},
pages = {1020--1040},
year = {2022},
volume = {213},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_8_a0/}
}
N. F. Abuzyarova. Representation of invariant subspaces of the Schwartz space. Sbornik. Mathematics, Tome 213 (2022) no. 8, pp. 1020-1040. http://geodesic.mathdoc.fr/item/SM_2022_213_8_a0/
[1] A. Aleman and B. Korenblum, “Derivation-invariant subspaces of $C^{\infty}$”, Comput. Methods Funct. Theory, 8:1–2 (2008), 493–512 | DOI | MR | Zbl
[2] N. F. Abuzyarova, “Spectral synthesis in the Schwartz space of infinitely differentiable functions”, Dokl. Ross. Akad. Nauk, 457:5 (2014), 510–513 ; English transl. in Dokl. Math., 90:1 (2014), 479–482 | MR | Zbl | DOI
[3] N. F. Abuzyarova, “Spectral synthesis for the differentiation operator in the Schwartz space”, Mat. Zametki, 102:2 (2017), 163–177 ; English transl. in Math. Notes, 102:2 (2017), 137–148 | DOI | MR | Zbl | DOI
[4] A. Aleman, A. Baranov and Yu. Belov, “Subspaces of $C^{\infty}$ invariant under the differentiation”, J. Funct. Anal., 268:8 (2015), 2421–2439 | DOI | MR | Zbl
[5] N. F. Abuzyarova, “Representation of synthesizable differentiation-invariant subspaces of the Schwartz space”, Dokl. Ross. Akad. Nauk Mat. Inform. Protsessy Upr., 498 (2021), 5–9 ; English transl. in Dokl. Math., 103:3 (2021), 99–102 | DOI | Zbl | DOI
[6] J. Sebastião e Silva, “Su certe classi di spazi localmente convessi importanti per le applicazioni”, Rend. Mat. e Appl. (5), 14 (1955), 388–410 | MR | Zbl
[7] L. Hörmander, The analysis of linear partial differential operators, v. I, Grundlehren Math. Wiss., 256, Distribution theory and Fourier analysis, Springer-Verlag, Berlin, 1983, ix+391 pp. | DOI | MR | Zbl
[8] N. F. Abuzyarova, “Closed submodules in the module of entire functions of exponential type and polynomial growth on the real axis”, Ufim. Mat. Zh., 6:4 (2014), 3–18 ; English transl. in Ufa Math. J., 6:4 (2014), 3–17 | Zbl | DOI | MR
[9] P. Koosis, The logarithmic integral, v. II, Cambridge Stud. Adv. Math., 21, Cambridge Univ. Press, Cambridge, 1992, xxvi+574 pp. | DOI | MR | Zbl
[10] L. Ehrenpreis, “Solution of some problems of division. IV. Invertible and elliptic operators”, Amer. J. Math., 82:3 (1960), 522–588 | DOI | MR | Zbl
[11] C. A. Berenstein and B. A. Taylor, “A new look at interpolation theory for entire functions of one variable”, Adv. Math., 33:2 (1979), 109–143 | DOI | MR | Zbl
[12] A. M. Sedletskii, “On functions periodic in the mean”, Izv. Akad. Nauk SSSR Ser. Mat., 34:6 (1970), 1391–1415 ; English transl. in Izv. Math., 4:6 (1970), 1406–1428 | MR | Zbl | DOI
[13] A. F. Leont'ev, “Properties of sequences of Dirichlet polynomials which are convergent on an interval of the imaginary axis”, Izv. Akad. Nauk SSSR Ser. Mat., 29:2 (1965), 269–328 (Russian) | MR | Zbl
[14] J. Diedonné and L. Schwartz, “La dualité dans les espaces $(\mathscr F)$ et $(\mathscr{LF})$”, Ann. Inst. Fourier (Grenoble), 1 (1950), 61–101 | DOI | MR | Zbl
[15] R. P. Boas, Jr., Entire functions, Academic Press Inc., New York, 1954, x+276 pp. | MR | Zbl
[16] V. S. Vladimirov, Generalized functions in mathematical physics, 2nd ed., Nauka, Moscow, 1979, 319 pp. ; English transl., Mir, Moscow, 1979, xii+362 pp. | MR | Zbl | MR | Zbl
[17] L. Hörmander, An introduction to complex analysis in several variables, D. Van Nostrand Co., Inc., Princeton, NJ–Toronto, ON–London, 1966, x+208 pp. | MR | Zbl
[18] N. F. Abuzyarova, “Some properties of principal submodules in the module of entire functions of exponential type and polynomial growth on the real axis”, Ufim. Mat. Zh., 8:1 (2016), 3–14 ; English transl. in Ufa Math. J., 8:1 (2016), 1–12 | DOI | MR
[19] N. F. Abuzyarova, “On conditions of invertibility in the sense of Ehrenpreis in the Schwartz algebra”, Lobachevskii J. Math., 42:6 (2021), 1141–1153 | DOI | MR | Zbl