Canonical geometrization of orientable $3$-manifolds defined by vector colourings of $3$-polytopes
Sbornik. Mathematics, Tome 213 (2022) no. 6, pp. 752-793 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The geometrization conjecture of Thurston (finally proved by Perelman) says that any oriented $3$-manifold can canonically be partitioned into pieces, which have a geometric structure modelled on one of the eight geometries: $S^3$, $\mathbb R^3$, $\mathbb H^3$, $S^2\times\mathbb R$, $\mathbb H^2\times \mathbb R$, the universal cover of $\mathrm{SL}(2,\mathbb{R})$, $\mathrm{Nil}$ and $\mathrm{Sol}$. In a seminal paper (1991) Davis and Januszkiewicz introduced a wide class of $n$-dimensional manifolds, small covers over simple $n$-polytopes. We give a complete answer to the following problem: build an explicit canonical decomposition of any orientable $3$-manifold defined by a vector colouring of a simple $3$-polytope, in particular, of a small cover. The proof is based on an analysis of results in this direction obtained previously by different authors. Bibliography: 44 titles.
Keywords: geometrization, vector colouring, $k$-belt, small cover, almost Pogorelov polytope.
Mots-clés : $\mathrm{JSJ}$-decomposition
@article{SM_2022_213_6_a2,
     author = {N. Yu. Erokhovets},
     title = {Canonical geometrization of orientable $3$-manifolds defined by vector colourings of $3$-polytopes},
     journal = {Sbornik. Mathematics},
     pages = {752--793},
     year = {2022},
     volume = {213},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_6_a2/}
}
TY  - JOUR
AU  - N. Yu. Erokhovets
TI  - Canonical geometrization of orientable $3$-manifolds defined by vector colourings of $3$-polytopes
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 752
EP  - 793
VL  - 213
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_6_a2/
LA  - en
ID  - SM_2022_213_6_a2
ER  - 
%0 Journal Article
%A N. Yu. Erokhovets
%T Canonical geometrization of orientable $3$-manifolds defined by vector colourings of $3$-polytopes
%J Sbornik. Mathematics
%D 2022
%P 752-793
%V 213
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2022_213_6_a2/
%G en
%F SM_2022_213_6_a2
N. Yu. Erokhovets. Canonical geometrization of orientable $3$-manifolds defined by vector colourings of $3$-polytopes. Sbornik. Mathematics, Tome 213 (2022) no. 6, pp. 752-793. http://geodesic.mathdoc.fr/item/SM_2022_213_6_a2/

[1] V. M. Buchstaber and T. E. Panov, Toric topology, Math. Surveys Monogr., 204, Amer. Math. Soc., Providence, RI, 2015, xiv+518 pp. | DOI | MR | Zbl

[2] M. Aschenbrenner, S. Friedl and H. Wilton, $3$-manifold groups, EMS Ser. Lect. Math., Eur. Math. Soc., Zürich, 2015, xiv+215 pp. | DOI | MR | Zbl

[3] F. Bonahon, “Geometric structures on $3$-manifolds”, Handbook of geometric topology, North-Holland, Amsterdam, 2002, 93–164 | DOI | MR | Zbl

[4] P. Scott, “The geometries of $3$-manifolds”, Bull. London Math. Soc., 15:5 (1983), 401–487 | DOI | MR | Zbl

[5] W. P. Thurston, The geometry and topology of three-manifolds, electronic version 1.1, 2002 http://msri.org/publications/books/gt3m/

[6] J. Morgan and Gang Tian, The geometrization conjecture, Clay Math. Monogr., 5, Amer. Math. Soc., Providence, RI; Clay Math. Inst., Cambridge, MA, 2014, x+291 pp. | MR | Zbl

[7] M. W. Davis and T. Januszkiewicz, “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl

[8] M. W. Davis and B. Okun, “Vanishing theorems and conjectures for the $\ell^2$-homology of right-angled Coxeter groups”, Geom. Topol., 5 (2001), 7–74 | DOI | MR | Zbl

[9] N. Yu. Erokhovets, “Three-dimensional right-angled polytopes of finite volume in the Lobachevsky space: combinatorics and constructions”, Algebraic topology, combinatorics, and mathematical physics, Tr. Mat. Inst. Steklova, 305, Steklov Math. Inst. RAS, Moscow, 2019, 86–147 ; English transl. in Proc. Steklov Inst. Math., 305 (2019), 78–134 | DOI | MR | Zbl | DOI

[10] T. A. Schroeder, “Geometrization of $3$-dimensional Coxeter orbifolds and Singer's conjecture”, Geom. Dedicata, 140 (2009), 163–174 | DOI | MR | Zbl

[11] M. W. Davis, The geometry and topology of Coxeter groups, London Math. Soc. Monogr. Ser., 32, Princeton Univ. Press, Princeton, NJ, 2008, xvi+584 pp. | DOI | MR | Zbl

[12] T. E. Panov and Ya. A. Veryovkin, “Polyhedral products and commutator subgroups of right-angled Artin and Coxeter groups”, Mat. Sb., 207:11 (2016), 105–126 ; English transl. in Sb. Math., 207:11 (2016), 1582–1600 | DOI | MR | Zbl | DOI

[13] Lisu Wu, Atoroidal manifolds in small covers, arXiv: 1812.09896

[14] Lisu Wu and Li Yu, “Fundamental groups of small covers revisited”, Int. Math. Res. Not. IMRN, 2021:10 (2021), 7262–7298 ; arXiv: 1712.00698 | DOI | MR | Zbl

[15] Zhi Lü and Lisu Wu, Topology and geometry of flagness and beltness of simple orbifolds, arXiv: 2009.11034

[16] M. Davis, T. Januszkiewicz and R. Scott, “Nonpositive curvature of blow-ups”, Selecta Math. (N.S.), 4:4 (1998), 491–547 | DOI | MR | Zbl

[17] M. Gromov, “Hyperbolic groups”, Essays in group theory, Math. Sci. Res. Inst. Publ., 8, Springer, New York, 1987, 75–263 | DOI | MR | Zbl

[18] A. D. Mednykh, “Automorphism groups of three-dimensional hyperbolic manifolds”, Dokl. Akad. Nauk SSSR, 285:1 (1985), 40–44 ; English transl. in Soviet Math. Dokl., 32:3 (1985), 633–636 | MR | Zbl

[19] A. D. Mednykh and A. Yu. Vesnin, “On three-dimensional hyperbolic manifolds of Löbell type”, Complex analysis and applications' 85 (Varna 1985), Publ. House Bulgar. Acad. Sci., Sofia, 1986, 440–446 | MR | Zbl

[20] A. Yu. Vesnin, “Three-dimensional hyperbolic manifolds of Löbell type”, Sibirsk. Mat. Zh., 28:5 (1987), 50–53 ; English transl. in Siberian Math. J., 28:5 (1987), 731–734 | MR | Zbl | DOI

[21] A. D. Mednykh, “Three-dimensional hyperelliptic manifolds”, Ann. Global. Anal. Geom., 8:1 (1990), 13–19 | DOI | MR | Zbl

[22] A. Yu. Vesnin and A. D. Mednykh, “Spherical Coxeter groups and hyperelliptic 3-manifolds”, Mat. Zametki, 66:2 (1999), 173–177 ; English transl. in Math. Notes, 66:2 (1999), 135–138 | DOI | MR | Zbl | DOI

[23] A. Yu. Vesnin, “Right-angled polyhedra and hyperbolic 3-manifolds”, Uspekhi Mat. Nauk, 72:2(434) (2017), 147–190 ; English transl. in Russian Math. Surveys, 72:2 (2017), 335–374 | DOI | MR | Zbl | DOI

[24] H. Nakayama and Y. Nishimura, “The orientability of small covers and coloring simple polytopes”, Osaka J. Math., 42:1 (2005), 243–256 | MR | Zbl

[25] G. M. Ziegler, Lectures on polytopes, Grad. Texts in Math., 152, Springer-Verlag, New York, 1995, x+370 pp. | DOI | MR | Zbl

[26] V. M. Buchstaber and N. Yu. Erokhovets, “Fullerenes, polytopes and toric topology”, Combinatorial and toric homotopy. Introductory lectures, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 35, World Sci. Publ., Hackensack, NJ, 2018, 67–178 ; arXiv: 1609.02949 | DOI | MR | Zbl

[27] N. Yu. Erokhovets, “Buchstaber invariant of simple polytopes”, Uspekhi Mat. Nauk, 63:5(383) (2008), 187–188 ; English transl. in Russian Math. Surveys, 63:5 (2008), 962–964 | DOI | MR | Zbl | DOI

[28] A. Ayzenberg, The problem of Buchstaber number and its combinatorial aspects, arXiv: 1003.0637

[29] I. V. Izmest'ev, “Free torus action on the manifold $\mathscr{Z}_P$ and the group of projectivities of a polytope $P$”, Uspekhi Mat. Nauk, 56:3(339) (2001), 169–170 ; English transl. in Russian Math. Surveys, 56:3 (2001), 582–583 | DOI | MR | Zbl | DOI

[30] N. Yu. Erokhovets, “Buchstaber invariant theory of simplicial complexes and convex polytopes”, Algebraic topology, convex polytopes, and related topics, Tr. Mat. Inst. Steklova, 286, MAIK “Nauka/Interperiodica”, Moscow, 2014, 144–206 ; English transl. in Proc. Steklov Inst. Math., 286 (2014), 128–187 | DOI | MR | Zbl | DOI

[31] A. Ayzenberg, “Buchstaber invariant, minimal non-simplices and related”, Osaka J. Math., 53:2 (2016), 377–395 | MR | Zbl

[32] A. V. Pogorelov, “A regular partition of Lobachevskian space”, Mat. Zametki, 1:1 (1967), 3–8 ; English transl. in Math. Notes, 1:1 (1967), 3–5 | MR | Zbl | DOI

[33] E. M. Andreev, “On convex polyhedra in Lobačevskiĭ spaces”, Mat. Sb. (N.S.), 81(123):3 (1970), 445–478 ; English transl. in Math. USSR-Sb., 10:3 (1970), 413–440 | MR | Zbl | DOI

[34] G. D. Birkhoff, “The reducibility of maps”, Amer. J. Math., 35:2 (1913), 115–128 | DOI | MR | Zbl

[35] E. M. Andreev, “On convex polyhedra of finite volume in Lobačevskiĭ space”, Mat. Sb. (N.S.), 83(125):2(10) (1970), 256–260 ; English transl. in Math. USSR-Sb., 12:2 (1970), 255–259 | MR | Zbl | DOI

[36] È. B. Vinberg and O. V. Shvartsman, “Discrete groups of motions of spaces of constant curvature”, Geometry – 2, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 29, VINITI, Moscow, 1988, 147–259 ; English transl. in Geometry II, Encyclopaedia Math. Sci., 29, Springer, Berlin, 1993, 139–248 | Zbl | DOI | MR

[37] A. Yu. Vesnin and A. A. Egorov, “Ideal right-angled polyhedra in Lobachevsky space”, Chebyshevskii Sb., 21:2 (2020), 65–83 | MR | Zbl

[38] A. A. Egorov and A. Yu. Vesnin, “On correlation of hyperbolic volumes of fullerenes with their properties”, Comput. Math. Biophys., 8 (2020), 150–167 | DOI | MR | Zbl

[39] A. Egorov and A. Vesnin, “Volume estimates for right-angled hyperbolic polyhedra”, Rend. Istit. Mat. Univ. Trieste, 52 (2020), 565–576 ; arXiv: 2010.11147 | DOI | MR | Zbl

[40] V. M. Buchstaber, N. Yu. Erokhovets, M. Masuda, T. E. Panov and S. Park, “Cohomological rigidity of manifolds defined by 3-dimensional polytopes”, Uspekhi Mat. Nauk, 72:2(434) (2017), 3–66 ; English transl. in Russian Math. Surveys, 72:2 (2017), 199–256 ; Cohomological rigidity of manifolds defined by right-angled 3-dimensional polytopes, arXiv: 1610.07575 | DOI | MR | Zbl | DOI

[41] V. M. Buchstaber and N. Yu. Erokhovets, “Constructions of families of three-dimensional polytopes, characteristic patches of fullerenes, and Pogorelov polytopes”, Izv. Ross. Akad. Nauk Ser. Mat., 81:5 (2017), 15–91 ; English transl. in Izv. Math., 81:5 (2017), 901–972 | DOI | MR | Zbl | DOI

[42] A. Hatcher, Notes on basic $3$-manifold topology https://pi.math.cornell.edu/~hatcher/3M/3Mfds.pdf

[43] W. Lück, “Survey on aspherical manifolds”, European congress of mathematics (Amsterdam 2008), Eur. Math. Soc., Zürich, 2010, 53–82 ; arXiv: 0902.2480 | DOI | MR | Zbl

[44] A. Hatcher, Algebraic topology, Cambridge Univ. Press, Cambridge, 2002, xii+544 pp. ; https://pi.math.cornell.edu/~hatcher/AT/AT.pdf | MR | Zbl