Canonical geometrization of orientable $3$-manifolds defined by vector colourings of $3$-polytopes
Sbornik. Mathematics, Tome 213 (2022) no. 6, pp. 752-793

Voir la notice de l'article provenant de la source Math-Net.Ru

The geometrization conjecture of Thurston (finally proved by Perelman) says that any oriented $3$-manifold can canonically be partitioned into pieces, which have a geometric structure modelled on one of the eight geometries: $S^3$, $\mathbb R^3$, $\mathbb H^3$, $S^2\times\mathbb R$, $\mathbb H^2\times \mathbb R$, the universal cover of $\mathrm{SL}(2,\mathbb{R})$, $\mathrm{Nil}$ and $\mathrm{Sol}$. In a seminal paper (1991) Davis and Januszkiewicz introduced a wide class of $n$-dimensional manifolds, small covers over simple $n$-polytopes. We give a complete answer to the following problem: build an explicit canonical decomposition of any orientable $3$-manifold defined by a vector colouring of a simple $3$-polytope, in particular, of a small cover. The proof is based on an analysis of results in this direction obtained previously by different authors. Bibliography: 44 titles.
Keywords: geometrization, vector colouring, $k$-belt, small cover, almost Pogorelov polytope.
Mots-clés : $\mathrm{JSJ}$-decomposition
@article{SM_2022_213_6_a2,
     author = {N. Yu. Erokhovets},
     title = {Canonical geometrization of orientable $3$-manifolds defined by vector colourings of $3$-polytopes},
     journal = {Sbornik. Mathematics},
     pages = {752--793},
     publisher = {mathdoc},
     volume = {213},
     number = {6},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_6_a2/}
}
TY  - JOUR
AU  - N. Yu. Erokhovets
TI  - Canonical geometrization of orientable $3$-manifolds defined by vector colourings of $3$-polytopes
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 752
EP  - 793
VL  - 213
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_6_a2/
LA  - en
ID  - SM_2022_213_6_a2
ER  - 
%0 Journal Article
%A N. Yu. Erokhovets
%T Canonical geometrization of orientable $3$-manifolds defined by vector colourings of $3$-polytopes
%J Sbornik. Mathematics
%D 2022
%P 752-793
%V 213
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2022_213_6_a2/
%G en
%F SM_2022_213_6_a2
N. Yu. Erokhovets. Canonical geometrization of orientable $3$-manifolds defined by vector colourings of $3$-polytopes. Sbornik. Mathematics, Tome 213 (2022) no. 6, pp. 752-793. http://geodesic.mathdoc.fr/item/SM_2022_213_6_a2/