Canonical geometrization of orientable $3$-manifolds defined by vector colourings of $3$-polytopes
Sbornik. Mathematics, Tome 213 (2022) no. 6, pp. 752-793
Voir la notice de l'article provenant de la source Math-Net.Ru
The geometrization conjecture of Thurston (finally proved by Perelman) says that any oriented $3$-manifold can canonically be partitioned into pieces, which have a geometric structure modelled on one of the eight geometries: $S^3$, $\mathbb R^3$, $\mathbb H^3$, $S^2\times\mathbb R$, $\mathbb H^2\times \mathbb R$, the universal cover of $\mathrm{SL}(2,\mathbb{R})$, $\mathrm{Nil}$ and $\mathrm{Sol}$. In a seminal paper (1991) Davis and Januszkiewicz introduced a wide class of $n$-dimensional manifolds, small covers over simple $n$-polytopes. We give a complete answer to the following problem: build an explicit canonical decomposition of any orientable $3$-manifold defined by a vector colouring of a simple $3$-polytope, in particular, of a small cover. The proof is based on an analysis of results in this direction obtained previously by different authors.
Bibliography: 44 titles.
Keywords:
geometrization, vector colouring, $k$-belt, small cover, almost Pogorelov polytope.
Mots-clés : $\mathrm{JSJ}$-decomposition
Mots-clés : $\mathrm{JSJ}$-decomposition
@article{SM_2022_213_6_a2,
author = {N. Yu. Erokhovets},
title = {Canonical geometrization of orientable $3$-manifolds defined by vector colourings of $3$-polytopes},
journal = {Sbornik. Mathematics},
pages = {752--793},
publisher = {mathdoc},
volume = {213},
number = {6},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_6_a2/}
}
TY - JOUR AU - N. Yu. Erokhovets TI - Canonical geometrization of orientable $3$-manifolds defined by vector colourings of $3$-polytopes JO - Sbornik. Mathematics PY - 2022 SP - 752 EP - 793 VL - 213 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2022_213_6_a2/ LA - en ID - SM_2022_213_6_a2 ER -
N. Yu. Erokhovets. Canonical geometrization of orientable $3$-manifolds defined by vector colourings of $3$-polytopes. Sbornik. Mathematics, Tome 213 (2022) no. 6, pp. 752-793. http://geodesic.mathdoc.fr/item/SM_2022_213_6_a2/