@article{SM_2022_213_5_a1,
author = {M. V. Balashov},
title = {Strong convexity of reachable sets of linear systems},
journal = {Sbornik. Mathematics},
pages = {604--623},
year = {2022},
volume = {213},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_5_a1/}
}
M. V. Balashov. Strong convexity of reachable sets of linear systems. Sbornik. Mathematics, Tome 213 (2022) no. 5, pp. 604-623. http://geodesic.mathdoc.fr/item/SM_2022_213_5_a1/
[1] E. B. Lee and L. Markus, Foundations of optimal control theory, John Wiley Sons, Inc., New York–London–Sydney, 1967, x+576 pp. | MR | Zbl
[2] M. Blanke, M. Kinnaert, J. Lunze and M. Staroswiecki, Diagnosis and fault-tolerant control, Springer, Berlin, 2003, xvii+571 pp. | MR | Zbl
[3] A. Chutinan and B. H. Krogh, “Computational techniques for hybrid system verification”, IEEE Trans. Automat. Control, 48:1 (2003), 64–75 | DOI | MR | Zbl
[4] A. B. Singer and P. I. Barton, “Global optimization with nonlinear ordinary differential equations”, J. Global Optim., 34:2 (2006), 159–190 | DOI | MR | Zbl
[5] R. J. Aumann, “Integrals of set-valued functions”, J. Math. Anal. Appl., 12:1 (1965), 1–12 | DOI | MR | Zbl
[6] A. A. Lyapunov, “On completely additive vector functions”, Izv. Akad. Nauk SSSR Ser. Mat., 4:6 (1940), 465–478 (Russian) | MR | Zbl
[7] L. S. Pontryagin, “Linear differential games of pursuit”, Mat. Sb., 112(154):3(7) (1980), 307–330 ; English transl. in Sb. Math., 40:3 (1981), 285–303 | MR | Zbl | DOI
[8] N. N. Krasovskii, Theory of control of motion: Linear systems, Nauka, Moscow, 1968, 475 pp. (Russian) | MR | Zbl
[9] A. B. Kurzhanski and P. Varaiya, “On verification of controlled hybrid dynamics through ellipsoidal techniques”, Proceedings of the 44th IEEE conference on decision and control (Seville 2005), IEEE, 2005, 4682–4687 | DOI
[10] Inseok Hwang, D. M. Stipanović and C. J. Tomlin, “Polytopic approximations of reachable sets applied to linear dynamic games and a class of nonlinear systems”, Advances in control, communication networks, and transportation systems, Systems Control Found. Appl., Birkhäuser Boston, Boston, MA, 2005, 3–19 | DOI | MR | Zbl
[11] G. E. Ivanov and E. S. Polovinkin, “On strongly convex differential games”, Differ. Uravn., 31:10 (1995), 1641–1648 ; English transl. in Differ. Equ., 31:10 (1995), 1603–1612 | MR | Zbl
[12] M. V. Balashov, “On polyhedral approximations in an $n$-dimensional space”, Zh. Vychisl. Mat. Mat. Fiz., 56:10 (2016), 1695–1701 ; English transl. in Comput. Math. Math. Phys., 56:10 (2016), 1679–1685 | DOI | Zbl | DOI | MR
[13] J.-Ph. Vial, “Strong and weak convexity of sets and functions”, Math. Oper. Res., 8:2 (1983), 231–259 | DOI | MR | Zbl
[14] E. S. Polovinkin, “Strongly convex analysis”, Mat. Sb., 187:2 (1996), 103–130 ; English transl. in Sb. Math., 187:2 (1996), 259–286 | DOI | MR | Zbl | DOI
[15] E. S. Polovinkin and M. V. Balashov, Elements of convex and strongly convex analysis, 2nd ed., Fizmatlit, Moscow, 2007, 438 pp. (Russian) | Zbl
[16] A. Weber and G. Reißig, “Local characterization of strongly convex sets”, J. Math. Anal. Appl., 400:2 (2013), 743–750 | DOI | MR | Zbl
[17] A. Weber and G. Reissig, “Classical and strong convexity of sublevel sets and application to attainable sets of nonlinear systems”, SIAM J. Control Optim., 52:5 (2014), 2857–2876 | DOI | MR | Zbl
[18] H. Frankowska and C. Olech, “$R$-convexity of the integral of set-valued functions”, Contributions to analysis and geometry (Baltimore, MD 1980), Johns Hopkins Univ. Press, Baltimore, MD, 1981, 117–129 | MR | Zbl
[19] M. V. Balashov, “Lipschitz stability of extremal problems with a strongly convex set”, J. Convex Anal., 27:1 (2020), 103–116 | MR | Zbl
[20] E. S. Polovinkin, Multivalued analysis and differential inclusions, Fizmatlit, Moscow, 2015, 524 pp. (Russian)
[21] R. T. Rockafellar, Convex analysis, Princeton Math. Ser., 28, Princeton Univ. Press, Princeton, NJ, 1970, xviii+451 pp. | MR | Zbl
[22] M. V. Balashov, “Chebyshev center and inscribed balls: properties and calculations”, Optim. Lett., 2021, 1–14, Publ. online | DOI
[23] V. V. Goncharov and G. E. Ivanov, “Strong and weak convexity of closed sets in a Hilbert space”, Operations research, engineering, and cyber security, Springer Optim. Appl., 113, Springer, Cham, 2017, 259–297 | DOI | MR | Zbl