Strong convexity of reachable sets of linear systems
Sbornik. Mathematics, Tome 213 (2022) no. 5, pp. 604-623 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The reachable set on some time interval of a linear control system $x'\in Ax\,{+}\,U$, $x(0)=0$, is considered. A number of cases is examined when the reachable set is the intersection of some balls of fixed radius $R$ (that is, a strongly convex set of radius $R$). In some cases the radius $R$ is estimated from above. It turns out that strong convexity is fairly typical for this class of reachable sets in a certain sense. Among possible applications of this result are the possibility of constructing outer polyhedral approximation of reachable sets with better accuracy in the Hausdorff metric than in the general case, and applications to linear differential games and some optimization problems. Bibliography: 23 titles.
Keywords: strongly convex set, reachable set, linear control system, Aumann integral, Hausdorff metric, nonsmooth analysis.
@article{SM_2022_213_5_a1,
     author = {M. V. Balashov},
     title = {Strong convexity of reachable sets of linear systems},
     journal = {Sbornik. Mathematics},
     pages = {604--623},
     year = {2022},
     volume = {213},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_5_a1/}
}
TY  - JOUR
AU  - M. V. Balashov
TI  - Strong convexity of reachable sets of linear systems
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 604
EP  - 623
VL  - 213
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_5_a1/
LA  - en
ID  - SM_2022_213_5_a1
ER  - 
%0 Journal Article
%A M. V. Balashov
%T Strong convexity of reachable sets of linear systems
%J Sbornik. Mathematics
%D 2022
%P 604-623
%V 213
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2022_213_5_a1/
%G en
%F SM_2022_213_5_a1
M. V. Balashov. Strong convexity of reachable sets of linear systems. Sbornik. Mathematics, Tome 213 (2022) no. 5, pp. 604-623. http://geodesic.mathdoc.fr/item/SM_2022_213_5_a1/

[1] E. B. Lee and L. Markus, Foundations of optimal control theory, John Wiley Sons, Inc., New York–London–Sydney, 1967, x+576 pp. | MR | Zbl

[2] M. Blanke, M. Kinnaert, J. Lunze and M. Staroswiecki, Diagnosis and fault-tolerant control, Springer, Berlin, 2003, xvii+571 pp. | MR | Zbl

[3] A. Chutinan and B. H. Krogh, “Computational techniques for hybrid system verification”, IEEE Trans. Automat. Control, 48:1 (2003), 64–75 | DOI | MR | Zbl

[4] A. B. Singer and P. I. Barton, “Global optimization with nonlinear ordinary differential equations”, J. Global Optim., 34:2 (2006), 159–190 | DOI | MR | Zbl

[5] R. J. Aumann, “Integrals of set-valued functions”, J. Math. Anal. Appl., 12:1 (1965), 1–12 | DOI | MR | Zbl

[6] A. A. Lyapunov, “On completely additive vector functions”, Izv. Akad. Nauk SSSR Ser. Mat., 4:6 (1940), 465–478 (Russian) | MR | Zbl

[7] L. S. Pontryagin, “Linear differential games of pursuit”, Mat. Sb., 112(154):3(7) (1980), 307–330 ; English transl. in Sb. Math., 40:3 (1981), 285–303 | MR | Zbl | DOI

[8] N. N. Krasovskii, Theory of control of motion: Linear systems, Nauka, Moscow, 1968, 475 pp. (Russian) | MR | Zbl

[9] A. B. Kurzhanski and P. Varaiya, “On verification of controlled hybrid dynamics through ellipsoidal techniques”, Proceedings of the 44th IEEE conference on decision and control (Seville 2005), IEEE, 2005, 4682–4687 | DOI

[10] Inseok Hwang, D. M. Stipanović and C. J. Tomlin, “Polytopic approximations of reachable sets applied to linear dynamic games and a class of nonlinear systems”, Advances in control, communication networks, and transportation systems, Systems Control Found. Appl., Birkhäuser Boston, Boston, MA, 2005, 3–19 | DOI | MR | Zbl

[11] G. E. Ivanov and E. S. Polovinkin, “On strongly convex differential games”, Differ. Uravn., 31:10 (1995), 1641–1648 ; English transl. in Differ. Equ., 31:10 (1995), 1603–1612 | MR | Zbl

[12] M. V. Balashov, “On polyhedral approximations in an $n$-dimensional space”, Zh. Vychisl. Mat. Mat. Fiz., 56:10 (2016), 1695–1701 ; English transl. in Comput. Math. Math. Phys., 56:10 (2016), 1679–1685 | DOI | Zbl | DOI | MR

[13] J.-Ph. Vial, “Strong and weak convexity of sets and functions”, Math. Oper. Res., 8:2 (1983), 231–259 | DOI | MR | Zbl

[14] E. S. Polovinkin, “Strongly convex analysis”, Mat. Sb., 187:2 (1996), 103–130 ; English transl. in Sb. Math., 187:2 (1996), 259–286 | DOI | MR | Zbl | DOI

[15] E. S. Polovinkin and M. V. Balashov, Elements of convex and strongly convex analysis, 2nd ed., Fizmatlit, Moscow, 2007, 438 pp. (Russian) | Zbl

[16] A. Weber and G. Reißig, “Local characterization of strongly convex sets”, J. Math. Anal. Appl., 400:2 (2013), 743–750 | DOI | MR | Zbl

[17] A. Weber and G. Reissig, “Classical and strong convexity of sublevel sets and application to attainable sets of nonlinear systems”, SIAM J. Control Optim., 52:5 (2014), 2857–2876 | DOI | MR | Zbl

[18] H. Frankowska and C. Olech, “$R$-convexity of the integral of set-valued functions”, Contributions to analysis and geometry (Baltimore, MD 1980), Johns Hopkins Univ. Press, Baltimore, MD, 1981, 117–129 | MR | Zbl

[19] M. V. Balashov, “Lipschitz stability of extremal problems with a strongly convex set”, J. Convex Anal., 27:1 (2020), 103–116 | MR | Zbl

[20] E. S. Polovinkin, Multivalued analysis and differential inclusions, Fizmatlit, Moscow, 2015, 524 pp. (Russian)

[21] R. T. Rockafellar, Convex analysis, Princeton Math. Ser., 28, Princeton Univ. Press, Princeton, NJ, 1970, xviii+451 pp. | MR | Zbl

[22] M. V. Balashov, “Chebyshev center and inscribed balls: properties and calculations”, Optim. Lett., 2021, 1–14, Publ. online | DOI

[23] V. V. Goncharov and G. E. Ivanov, “Strong and weak convexity of closed sets in a Hilbert space”, Operations research, engineering, and cyber security, Springer Optim. Appl., 113, Springer, Cham, 2017, 259–297 | DOI | MR | Zbl