@article{SM_2022_213_11_a4,
author = {S. Yu. Orevkov},
title = {Counting lattice triangulations: {Fredholm} equations in combinatorics},
journal = {Sbornik. Mathematics},
pages = {1530--1558},
year = {2022},
volume = {213},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_11_a4/}
}
S. Yu. Orevkov. Counting lattice triangulations: Fredholm equations in combinatorics. Sbornik. Mathematics, Tome 213 (2022) no. 11, pp. 1530-1558. http://geodesic.mathdoc.fr/item/SM_2022_213_11_a4/
[1] E. E. Anclin, “An upper bound for the number of planar lattice triangulations”, J. Combin. Theory Ser. A, 103:2 (2003), 383–386 | DOI | MR | Zbl
[2] I. Fredholm, “Sur une classe d'équations fonctionnelles”, Acta Math., 27:1 (1903), 365–390 | DOI | MR | Zbl
[3] I. M. Gelfand, M. M. Kapranov and A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Math. Theory Appl., Birkhäuser Boston, Inc., 1994, x+523 pp. | DOI | MR | Zbl
[4] V. Kaibel and G. M. Ziegler, “Counting lattice triangulations”, Surveys in combinatorics 2003 (Univ. of Wales, Bangor, UK 2003), London Math. Soc. Lecture Note Ser., 307, Cambridge Univ. Press, Cambridge, 2003, 277–307 | DOI | MR | Zbl
[5] L. V. Kantorovich and V. I. Krylov, Approximate methods of higher analysis, 5th corr. ed., Fizmatgiz, Moscow–Leningrad, 1962, 708 pp. ; English transl. of 3rd ed., Interscience Publishers, Inc., New York; P. Noordhoff Ltd., Groningen, 1958, xv+681 pp. | MR | Zbl | MR | Zbl
[6] B. V. Khvedelidze, “Fredholm equation”, Matematicheskaya Entsiklopediya, ed. I. M. Vinogradov, Sov. Entsiklopediya, Moscow, 1977; English transl., Fredholm equation, Encyclopedia of Mathematics http://encyclopediaofmath.org/index.php?title=Fredholm_equation&oldid=46977
[7] J. Matoušek, P. Valtr and E. Welzl, On two encodings of lattice triangulations, Manuscript, 2006
[8] S. Yu. Orevkov, “Asymptotic number of triangulations with vertices in $\mathbf Z^2$”, J. Combin. Theory Ser. A, 86:1 (1999), 200–203 | DOI | MR | Zbl
[9] S. Yu. Orevkov and V. M. Kharlamov, “Asymptotic growth of the number of classes of real plane algebraic curves as the degree grows”, Representation theory, dynamical systems, combinatorial and algorithmic methods. Part V, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 266, St. Petersburg Department of Steklov Mathematical Institute, St. Petersburg, 2000, 218–233 ; English transl. in J. Math. Sci. (N.Y.), 113:5 (2003), 666–674 | MR | Zbl | DOI
[10] M. Sharir and A. Sheffer, “Counting triangulations of planar point sets”, Electron. J. Combin., 18:1 (2011), 70, 74 pp. | DOI | MR | Zbl
[11] J. D. Tamarkin, “On Fredholm's integral equations, whose kernels are analytic in a parameter”, Ann. of Math. (2), 28:1–2 (1926–1927), 127–152 | DOI | MR | Zbl
[12] E. Welzl, “The number of triangulations on planar point sets”, Graph drawing, Lecture Notes in Comput. Sci., 4372, Springer, Berlin, 2007, 1–4 | DOI | MR | Zbl
[13] E. Welzl, J. Matušek and P. Valtr, Lattice triangulations, Talk in Freie Univ. (Berlin 2006)