Counting lattice triangulations: Fredholm equations in combinatorics
Sbornik. Mathematics, Tome 213 (2022) no. 11, pp. 1530-1558

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f(m,n)$ be the number of primitive lattice triangulations of an $m\times n$ rectangle. We compute the limits $\lim_n f(m,n)^{1/n}$ for $m=2,3$. For $m=2$ we obtain the exact value of the limit, which is $(611+\sqrt{73})/36$. For $m=3$ we express the limit in terms of a certain Fredholm integral equation for generating functions. This provides a polynomial-time algorithm (with respect to the number of computed digits) for the computation of the limit with any prescribed precision. Bibliography: 13 titles.
Keywords: asymptotic, primitive triangulation, Fredholm's integral equation.
@article{SM_2022_213_11_a4,
     author = {S. Yu. Orevkov},
     title = {Counting lattice triangulations: {Fredholm} equations in combinatorics},
     journal = {Sbornik. Mathematics},
     pages = {1530--1558},
     publisher = {mathdoc},
     volume = {213},
     number = {11},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_11_a4/}
}
TY  - JOUR
AU  - S. Yu. Orevkov
TI  - Counting lattice triangulations: Fredholm equations in combinatorics
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 1530
EP  - 1558
VL  - 213
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_11_a4/
LA  - en
ID  - SM_2022_213_11_a4
ER  - 
%0 Journal Article
%A S. Yu. Orevkov
%T Counting lattice triangulations: Fredholm equations in combinatorics
%J Sbornik. Mathematics
%D 2022
%P 1530-1558
%V 213
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2022_213_11_a4/
%G en
%F SM_2022_213_11_a4
S. Yu. Orevkov. Counting lattice triangulations: Fredholm equations in combinatorics. Sbornik. Mathematics, Tome 213 (2022) no. 11, pp. 1530-1558. http://geodesic.mathdoc.fr/item/SM_2022_213_11_a4/