Derivative of the Minkowski function: optimal estimates
Sbornik. Mathematics, Tome 213 (2022) no. 10, pp. 1372-1399

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that the derivative of the Minkowski function $?(x)$, if it exists, can take only two values, $0$ and $+\infty$. It is also known that the value of $?'(x)$ at a point $x=[0;a_1,a_2,\dots,a_t,\dots]$ is related to the limiting behaviour of the arithmetic mean $(a_1+a_2+\dots+a_t)/t$. In particular, as shown by Moshchevitin and Dushistova, if $a_1+a_2+\dots+a_t>(\kappa_2+\varepsilon)t$, where $\varepsilon>0$ and $\kappa_2\approx 4.4010487$ is some explicitly given constant, then $?'(x)=0$. They also showed that $\kappa_2$ cannot be replaced by a smaller constant. We consider the dual problem: how small can the quantity $\kappa_2t-a_1+a_2+\dots+a_t$ be if it is known that $?'(x)=0$? We obtain optimal estimates in this problem. Bibliography: 9 titles.
Keywords: Minkowski function, continued fractions.
@article{SM_2022_213_10_a1,
     author = {D. R. Gayfulin},
     title = {Derivative of the {Minkowski} function: optimal estimates},
     journal = {Sbornik. Mathematics},
     pages = {1372--1399},
     publisher = {mathdoc},
     volume = {213},
     number = {10},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_10_a1/}
}
TY  - JOUR
AU  - D. R. Gayfulin
TI  - Derivative of the Minkowski function: optimal estimates
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 1372
EP  - 1399
VL  - 213
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_10_a1/
LA  - en
ID  - SM_2022_213_10_a1
ER  - 
%0 Journal Article
%A D. R. Gayfulin
%T Derivative of the Minkowski function: optimal estimates
%J Sbornik. Mathematics
%D 2022
%P 1372-1399
%V 213
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2022_213_10_a1/
%G en
%F SM_2022_213_10_a1
D. R. Gayfulin. Derivative of the Minkowski function: optimal estimates. Sbornik. Mathematics, Tome 213 (2022) no. 10, pp. 1372-1399. http://geodesic.mathdoc.fr/item/SM_2022_213_10_a1/