Derivative of the Minkowski function: optimal estimates
Sbornik. Mathematics, Tome 213 (2022) no. 10, pp. 1372-1399 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is well known that the derivative of the Minkowski function $?(x)$, if it exists, can take only two values, $0$ and $+\infty$. It is also known that the value of $?'(x)$ at a point $x=[0;a_1,a_2,\dots,a_t,\dots]$ is related to the limiting behaviour of the arithmetic mean $(a_1+a_2+\dots+a_t)/t$. In particular, as shown by Moshchevitin and Dushistova, if $a_1+a_2+\dots+a_t>(\kappa_2+\varepsilon)t$, where $\varepsilon>0$ and $\kappa_2\approx 4.4010487$ is some explicitly given constant, then $?'(x)=0$. They also showed that $\kappa_2$ cannot be replaced by a smaller constant. We consider the dual problem: how small can the quantity $\kappa_2t-a_1+a_2+\dots+a_t$ be if it is known that $?'(x)=0$? We obtain optimal estimates in this problem. Bibliography: 9 titles.
Keywords: Minkowski function, continued fractions.
@article{SM_2022_213_10_a1,
     author = {D. R. Gayfulin},
     title = {Derivative of the {Minkowski} function: optimal estimates},
     journal = {Sbornik. Mathematics},
     pages = {1372--1399},
     year = {2022},
     volume = {213},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2022_213_10_a1/}
}
TY  - JOUR
AU  - D. R. Gayfulin
TI  - Derivative of the Minkowski function: optimal estimates
JO  - Sbornik. Mathematics
PY  - 2022
SP  - 1372
EP  - 1399
VL  - 213
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2022_213_10_a1/
LA  - en
ID  - SM_2022_213_10_a1
ER  - 
%0 Journal Article
%A D. R. Gayfulin
%T Derivative of the Minkowski function: optimal estimates
%J Sbornik. Mathematics
%D 2022
%P 1372-1399
%V 213
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2022_213_10_a1/
%G en
%F SM_2022_213_10_a1
D. R. Gayfulin. Derivative of the Minkowski function: optimal estimates. Sbornik. Mathematics, Tome 213 (2022) no. 10, pp. 1372-1399. http://geodesic.mathdoc.fr/item/SM_2022_213_10_a1/

[1] H. Minkowski, “Zur Geometrie der Zahlen”, Verhandlungen des dritten Internationalen Mathematiker-Kongresses (Heidelberg 1904), B. G. Teubner, Leipzig, 1905, 164–173 | Zbl

[2] R. Salem, “On some singular monotonic functions which are strictly increasing”, Trans. Amer. Math. Soc., 53:3 (1943), 427–439 | DOI | MR | Zbl

[3] P. Viader, J. Paradís and L. Bibiloni, “A new light on Minkowski's $?(x)$ function”, J. Number Theory, 73:2 (1998), 212–227 | DOI | MR | Zbl

[4] J. Paradis, P. Viader and L. Bibiloni, “The derivative of Minkowski's $?(x)$ function”, J. Math. Anal. Appl., 253:1 (2001), 107–125 | DOI | MR | Zbl

[5] I. D. Kan, “Methods for estimating continuants”, Fundam. Prikl. Mat., 16:6 (2010), 95–108 ; English transl. in J. Math. Sci. (N.Y.), 182:4 (2012), 508–517 ; also see Methods for estimating of continuants, corrected version, 2021, arXiv: 2106.03789 | MR | Zbl | DOI

[6] A. A. Dushistova, I. D. Kan and N. G. Moshchevitin, “Differentiability of the Minkowski question mark function”, J. Math. Anal. Appl., 401:2 (2013), 774–794 | DOI | MR | Zbl

[7] D. R. Gayfulin and I. D. Kan, “The derivative of the Minkowski function”, Izv. Ross. Akad. Nauk Ser. Mat., 85:4 (2021), 5–52 ; English transl. in Izv. Math., 85:4 (2021), 621–665 | DOI | MR | Zbl | DOI

[8] D. Gayfulin, On the derivative of the Minkowski question-mark function, 2021, arXiv: 2107.00461

[9] T. S. Motzkin and E. G. Straus, “Some combinatorial extremum problems”, Proc. Amer. Math. Soc., 7:6 (1956), 1014–1021 | DOI | MR | Zbl