@article{SM_2022_213_10_a1,
author = {D. R. Gayfulin},
title = {Derivative of the {Minkowski} function: optimal estimates},
journal = {Sbornik. Mathematics},
pages = {1372--1399},
year = {2022},
volume = {213},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_10_a1/}
}
D. R. Gayfulin. Derivative of the Minkowski function: optimal estimates. Sbornik. Mathematics, Tome 213 (2022) no. 10, pp. 1372-1399. http://geodesic.mathdoc.fr/item/SM_2022_213_10_a1/
[1] H. Minkowski, “Zur Geometrie der Zahlen”, Verhandlungen des dritten Internationalen Mathematiker-Kongresses (Heidelberg 1904), B. G. Teubner, Leipzig, 1905, 164–173 | Zbl
[2] R. Salem, “On some singular monotonic functions which are strictly increasing”, Trans. Amer. Math. Soc., 53:3 (1943), 427–439 | DOI | MR | Zbl
[3] P. Viader, J. Paradís and L. Bibiloni, “A new light on Minkowski's $?(x)$ function”, J. Number Theory, 73:2 (1998), 212–227 | DOI | MR | Zbl
[4] J. Paradis, P. Viader and L. Bibiloni, “The derivative of Minkowski's $?(x)$ function”, J. Math. Anal. Appl., 253:1 (2001), 107–125 | DOI | MR | Zbl
[5] I. D. Kan, “Methods for estimating continuants”, Fundam. Prikl. Mat., 16:6 (2010), 95–108 ; English transl. in J. Math. Sci. (N.Y.), 182:4 (2012), 508–517 ; also see Methods for estimating of continuants, corrected version, 2021, arXiv: 2106.03789 | MR | Zbl | DOI
[6] A. A. Dushistova, I. D. Kan and N. G. Moshchevitin, “Differentiability of the Minkowski question mark function”, J. Math. Anal. Appl., 401:2 (2013), 774–794 | DOI | MR | Zbl
[7] D. R. Gayfulin and I. D. Kan, “The derivative of the Minkowski function”, Izv. Ross. Akad. Nauk Ser. Mat., 85:4 (2021), 5–52 ; English transl. in Izv. Math., 85:4 (2021), 621–665 | DOI | MR | Zbl | DOI
[8] D. Gayfulin, On the derivative of the Minkowski question-mark function, 2021, arXiv: 2107.00461
[9] T. S. Motzkin and E. G. Straus, “Some combinatorial extremum problems”, Proc. Amer. Math. Soc., 7:6 (1956), 1014–1021 | DOI | MR | Zbl