Derivative of the Minkowski function: optimal estimates
Sbornik. Mathematics, Tome 213 (2022) no. 10, pp. 1372-1399
Voir la notice de l'article provenant de la source Math-Net.Ru
It is well known that the derivative of the Minkowski function $?(x)$, if it exists, can take only two values, $0$ and $+\infty$. It is also known that the value of $?'(x)$ at a point $x=[0;a_1,a_2,\dots,a_t,\dots]$ is related to the limiting behaviour of the arithmetic mean $(a_1+a_2+\dots+a_t)/t$. In particular, as shown by Moshchevitin and Dushistova, if $a_1+a_2+\dots+a_t>(\kappa_2+\varepsilon)t$, where $\varepsilon>0$ and $\kappa_2\approx 4.4010487$ is some explicitly given constant, then $?'(x)=0$. They also showed that $\kappa_2$ cannot be replaced by a smaller constant. We consider the dual problem: how small can the quantity $\kappa_2t-a_1+a_2+\dots+a_t$ be if it is known that $?'(x)=0$? We obtain optimal estimates in this problem.
Bibliography: 9 titles.
Keywords:
Minkowski function, continued fractions.
@article{SM_2022_213_10_a1,
author = {D. R. Gayfulin},
title = {Derivative of the {Minkowski} function: optimal estimates},
journal = {Sbornik. Mathematics},
pages = {1372--1399},
publisher = {mathdoc},
volume = {213},
number = {10},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2022_213_10_a1/}
}
D. R. Gayfulin. Derivative of the Minkowski function: optimal estimates. Sbornik. Mathematics, Tome 213 (2022) no. 10, pp. 1372-1399. http://geodesic.mathdoc.fr/item/SM_2022_213_10_a1/