Approximative properties of sets and continuous selections
Sbornik. Mathematics, Tome 211 (2020) no. 8, pp. 1190-1211

Voir la notice de l'article provenant de la source Math-Net.Ru

Sets admitting a continuous selection of the operators of best and near-best approximation are studied. Michael's classical continuous selection theorem is extended to the case of a lower semicontinuous metric projection in finite-dimensional spaces (with no a priori convexity conditions on its values). Sufficient conditions on the metric projection implying the solarity of the corresponding set are put forward in finite-dimensional polyhedral spaces. Available results for suns $V$ are employed to establish the existence of continuous selections of the relative (with respect to $V$) Chebyshev near-centre map and of the sets of relative (with respect to $V$) near-Chebyshev points in certain classical spaces. Bibliography: 30 titles.
Keywords: set-valued mapping, continuous selection, sun, monotone path-connected set, relative Chebyshev centre and point.
@article{SM_2020_211_8_a5,
     author = {I. G. Tsar'kov},
     title = {Approximative properties of sets and continuous selections},
     journal = {Sbornik. Mathematics},
     pages = {1190--1211},
     publisher = {mathdoc},
     volume = {211},
     number = {8},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_8_a5/}
}
TY  - JOUR
AU  - I. G. Tsar'kov
TI  - Approximative properties of sets and continuous selections
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 1190
EP  - 1211
VL  - 211
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_8_a5/
LA  - en
ID  - SM_2020_211_8_a5
ER  - 
%0 Journal Article
%A I. G. Tsar'kov
%T Approximative properties of sets and continuous selections
%J Sbornik. Mathematics
%D 2020
%P 1190-1211
%V 211
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2020_211_8_a5/
%G en
%F SM_2020_211_8_a5
I. G. Tsar'kov. Approximative properties of sets and continuous selections. Sbornik. Mathematics, Tome 211 (2020) no. 8, pp. 1190-1211. http://geodesic.mathdoc.fr/item/SM_2020_211_8_a5/