First-order zero-one law for~the~uniform~model of the random graph
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 211 (2020) no. 7, pp. 956-966
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper considers the Erdős-Rényi random graph in the uniform model $G(n,m)$, where $m=m(n)$ is a sequence of nonnegative integers such that $m(n)\sim cn^{\alpha}(2-\varepsilon)n^2$ for some $c>0$, $\alpha\in[0,2]$, and $\varepsilon>0$. It is shown that $G(n,m)$ obeys the zero-one law for the first-order language if and only if either $\alpha\in\{0,2\}$, or $\alpha$ is irrational, or $\alpha\in(0,1)$ and $\alpha$ is not a number of the form $1-1/\ell$, $\ell\in\mathbb{N}$. 
Bibliography: 15 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
zero-one law, first-order logic, uniform model of the random graph.
                    
                    
                    
                  
                
                
                @article{SM_2020_211_7_a2,
     author = {M. E. Zhukovskii and N. M. Sveshnikov},
     title = {First-order zero-one law for~the~uniform~model of the random graph},
     journal = {Sbornik. Mathematics},
     pages = {956--966},
     publisher = {mathdoc},
     volume = {211},
     number = {7},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_7_a2/}
}
                      
                      
                    M. E. Zhukovskii; N. M. Sveshnikov. First-order zero-one law for~the~uniform~model of the random graph. Sbornik. Mathematics, Tome 211 (2020) no. 7, pp. 956-966. http://geodesic.mathdoc.fr/item/SM_2020_211_7_a2/
