First-order zero-one law for~the~uniform~model of the random graph
Sbornik. Mathematics, Tome 211 (2020) no. 7, pp. 956-966

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the Erdős-Rényi random graph in the uniform model $G(n,m)$, where $m=m(n)$ is a sequence of nonnegative integers such that $m(n)\sim cn^{\alpha}(2-\varepsilon)n^2$ for some $c>0$, $\alpha\in[0,2]$, and $\varepsilon>0$. It is shown that $G(n,m)$ obeys the zero-one law for the first-order language if and only if either $\alpha\in\{0,2\}$, or $\alpha$ is irrational, or $\alpha\in(0,1)$ and $\alpha$ is not a number of the form $1-1/\ell$, $\ell\in\mathbb{N}$. Bibliography: 15 titles.
Keywords: zero-one law, first-order logic, uniform model of the random graph.
@article{SM_2020_211_7_a2,
     author = {M. E. Zhukovskii and N. M. Sveshnikov},
     title = {First-order zero-one law for~the~uniform~model of the random graph},
     journal = {Sbornik. Mathematics},
     pages = {956--966},
     publisher = {mathdoc},
     volume = {211},
     number = {7},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_7_a2/}
}
TY  - JOUR
AU  - M. E. Zhukovskii
AU  - N. M. Sveshnikov
TI  - First-order zero-one law for~the~uniform~model of the random graph
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 956
EP  - 966
VL  - 211
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_7_a2/
LA  - en
ID  - SM_2020_211_7_a2
ER  - 
%0 Journal Article
%A M. E. Zhukovskii
%A N. M. Sveshnikov
%T First-order zero-one law for~the~uniform~model of the random graph
%J Sbornik. Mathematics
%D 2020
%P 956-966
%V 211
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2020_211_7_a2/
%G en
%F SM_2020_211_7_a2
M. E. Zhukovskii; N. M. Sveshnikov. First-order zero-one law for~the~uniform~model of the random graph. Sbornik. Mathematics, Tome 211 (2020) no. 7, pp. 956-966. http://geodesic.mathdoc.fr/item/SM_2020_211_7_a2/