A generalized theorem on curvilinear three-web boundaries and its applications
Sbornik. Mathematics, Tome 211 (2020) no. 3, pp. 422-454 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Suppose that a curvilinear three-web is given by the equation $F(x,y,z)=0$. A specific structure of the derivatives of the function $F$ is established that characterizes regular three-webs. This makes it possible to list all regular three-webs formed by the Cartesian net and a family of circles, and also by the Cartesian net and a family of second-order curves. Bibliography: 4 titles.
Keywords: curvilinear three-web, regular three-web, circle three-web, three-web of conics.
@article{SM_2020_211_3_a3,
     author = {A. M. Shelekhov},
     title = {A~generalized theorem on curvilinear three-web boundaries and its applications},
     journal = {Sbornik. Mathematics},
     pages = {422--454},
     year = {2020},
     volume = {211},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_3_a3/}
}
TY  - JOUR
AU  - A. M. Shelekhov
TI  - A generalized theorem on curvilinear three-web boundaries and its applications
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 422
EP  - 454
VL  - 211
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_3_a3/
LA  - en
ID  - SM_2020_211_3_a3
ER  - 
%0 Journal Article
%A A. M. Shelekhov
%T A generalized theorem on curvilinear three-web boundaries and its applications
%J Sbornik. Mathematics
%D 2020
%P 422-454
%V 211
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2020_211_3_a3/
%G en
%F SM_2020_211_3_a3
A. M. Shelekhov. A generalized theorem on curvilinear three-web boundaries and its applications. Sbornik. Mathematics, Tome 211 (2020) no. 3, pp. 422-454. http://geodesic.mathdoc.fr/item/SM_2020_211_3_a3/

[1] A. M. Shelekhov, V. B. Lazareva, A. A. Utkin, Krivolineinye tri-tkani, Tverskoi gos. un-t, Tver, 2013, 237 pp. | Zbl

[2] W. Blaschke, Einführung in die Geometrie der Waben, Birkhäuser Verlag, Basel, Stuttgart, 1955, 108 pp. | MR | MR | Zbl

[3] V. B. Lazareva, A. M. Shelekhov, “On triangulations of the plane by pencils of conics”, Sb. Math., 198:11 (2007), 1637–1663 | DOI | DOI | MR | Zbl

[4] M. A. Polovtseva, “O nekotorykh determinantnykh mnogoobraziyakh v $\mathbb{P}^5$ i $\mathbb{P}^9$ kak obrazakh algebraicheskikh sistem ploskikh krivykh vtoroi i tretei stepeni”, Konstruktivnaya algebraicheskaya geometriya, Resp. sb. nauch. tr., 190, Yaroslavskii ped. in-t, Yaroslavl, 1980, 100–114