Spectral representations of topological groups and near-openly generated groups
Sbornik. Mathematics, Tome 211 (2020) no. 2, pp. 258-274 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Near-openly generated groups are introduced. They form a topological and multiplicative subclass of $\mathbb R$-factorizable groups. Dense and open subgroups, quotients and the Raikov completion of a near-openly generated group are near-openly generated. Almost connected pro-Lie groups, Lindelöf almost metrizable groups and the spaces $C_p(X)$ of all continuous real-valued functions on a Tychonoff space with pointwise convergence topology are near-openly generated. We provide characterizations of near-openly generated groups using methods of inverse spectra and topological game theory. Bibliography: 24 titles.
Keywords: topological group, (nearly open) homomorphism, inverse spectrum, topological game, $\mathbb R$-factorizable group.
@article{SM_2020_211_2_a3,
     author = {V. M. Valov and K. L. Kozlov},
     title = {Spectral representations of topological groups and near-openly generated groups},
     journal = {Sbornik. Mathematics},
     pages = {258--274},
     year = {2020},
     volume = {211},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_2_a3/}
}
TY  - JOUR
AU  - V. M. Valov
AU  - K. L. Kozlov
TI  - Spectral representations of topological groups and near-openly generated groups
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 258
EP  - 274
VL  - 211
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_2_a3/
LA  - en
ID  - SM_2020_211_2_a3
ER  - 
%0 Journal Article
%A V. M. Valov
%A K. L. Kozlov
%T Spectral representations of topological groups and near-openly generated groups
%J Sbornik. Mathematics
%D 2020
%P 258-274
%V 211
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2020_211_2_a3/
%G en
%F SM_2020_211_2_a3
V. M. Valov; K. L. Kozlov. Spectral representations of topological groups and near-openly generated groups. Sbornik. Mathematics, Tome 211 (2020) no. 2, pp. 258-274. http://geodesic.mathdoc.fr/item/SM_2020_211_2_a3/

[1] K. H. Hofmann, S. A. Morris, The Lie theory of connected pro-Lie groups. A structure theory for pro-Lie algebras, pro-Lie groups, and connected locally compact groups, EMS Tracts Math., 2, Eur. Math. Soc., Zürich, 2007, xvi+678 pp. | DOI | MR | Zbl

[2] K. H. Hofmann, S. A. Morris, “The structure of almost connected pro-Lie groups”, J. Lie Theory, 21:2 (2011), 347–383 | MR | Zbl

[3] M. M. Choban, “Topologicheskoe stroenie podmnozhestv topologicheskikh grupp i ikh faktor-prostranstv”, Topologicheskie struktury i algebraicheskie sistemy, Matem. issled., 44, Shtiinitsa, Kishinev, 1977, 117–163 | MR | Zbl

[4] K. L. Kozlov, “Spectral decompositions of spaces induced by spectral decompositions of acting groups”, Topology Appl., 160:11 (2013), 1188–1205 | DOI | MR | Zbl

[5] K. L. Kozlov, “$\mathbb R$-factorizable $G$-spaces”, Topology Appl., 227 (2017), 146–164 | DOI | MR | Zbl

[6] A. G. Leiderman, M. G. Tkachenko, “Lattices of homomorphisms and pro-Lie groups”, Topology Appl., 214 (2016), 1–20 | DOI | MR | Zbl

[7] B. A. Pasynkov, “Almost metrizable topological groups”, Soviet Math. Dokl., 6:2 (1965), 404–408 | MR | Zbl

[8] E. G. Skljarenko, “On topological structure of locally bicompact groups and their quotient spaces”, Amer. Math. Soc. Transl. Ser. 2, 39, Amer. Math. Soc., Providence, RI, 1964, 57–82 | DOI | MR | Zbl

[9] V. V. Uspenskiĭ, “Topological groups and Dugundji compacta”, Math. USSR-Sb., 67:2 (1990), 555–580 | DOI | MR | Zbl

[10] A. Arhangel'skii, M. Tkachenko, Topological groups and related structures, Atlantis Stud. Math., 1, Atlantis Press, Paris; World Sci. Publ. Co. Pte. Ltd., Hackensack, NJ, 2008, xiv+781 pp. | DOI | MR | Zbl

[11] V. Pták, “Completeness and the open mapping theorem”, Bull. Soc. Math. France, 86 (1958), 41–74 | DOI | MR | Zbl

[12] M. G. Tkachenko, “Some results on inverse spectra. II”, Comment. Math. Univ. Carolin., 22:4 (1981), 819–841 | MR | Zbl

[13] V. M. Valov, “Some characterizations of the spaces with a lattice of $d$-open mappings”, C. R. Acad. Bulgare Sci., 39:9 (1986), 9–12 | MR | Zbl

[14] P. Daniels, K. Kunen, Haoxuan Zhou, “On the open-open game”, Fund. Math., 145:3 (1994), 205–220 | MR | Zbl

[15] V. Valov, “$\mathrm I$-favorable spaces: revisited”, Topology Proc., 51 (2018), 277–292 | MR | Zbl

[16] A. Chigogidze, Inverse spectra, North-Holland Math. Library, 53, North-Holland Publishing Co., Amsterdam, 1996, x+421 pp. | MR | Zbl

[17] E. V. Shchepin, “Topology of limit spaces of uncountable inverse spectra”, Russian Math. Surveys, 31:5 (1976), 155–191 | DOI | MR | Zbl

[18] M. G. Tkačenko, “Factorization theorems for topological groups and their applications”, Topology Appl., 38:1 (1991), 21–37 | DOI | MR | Zbl

[19] V. Valov, “External characterization of $I$-favorable spaces”, Math. Balkanica (N.S.), 25:1-2 (2011), 61–78 | MR | Zbl

[20] L. B. Shapiro, “On spaces coabsolute to a generalized Cantor discontinuum”, Soviet Math. Dokl., 33 (1986), 870–874 | MR | Zbl

[21] L. V. Shirokov, “An extrinsic characterization of Dugundji spaces and kappa-metrizable compact Hausdorff spaces”, Soviet Math. Dokl., 25 (1982), 507–510 | MR | Zbl

[22] E. V. Shchepin, “Functors and uncountable powers of compacta”, Russian Math. Surveys, 36:3 (1981), 1–71 | DOI | MR | Zbl

[23] A. Kucharski, Sz. Plewik, V. Valov, “Skeletally Dugundji spaces”, Cent. Eur. J. Math., 11:11 (2013), 1949–1959 | DOI | MR | Zbl

[24] Li-Hong Xie, Shou Lin, “$\mathbb R$-factorizability and $\omega$-uniform continuity in topological groups”, Topology Appl., 159:10-11 (2012), 2711–2720 | DOI | MR | Zbl