Spectral representations of topological groups and near-openly generated groups
Sbornik. Mathematics, Tome 211 (2020) no. 2, pp. 258-274

Voir la notice de l'article provenant de la source Math-Net.Ru

Near-openly generated groups are introduced. They form a topological and multiplicative subclass of $\mathbb R$-factorizable groups. Dense and open subgroups, quotients and the Raikov completion of a near-openly generated group are near-openly generated. Almost connected pro-Lie groups, Lindelöf almost metrizable groups and the spaces $C_p(X)$ of all continuous real-valued functions on a Tychonoff space with pointwise convergence topology are near-openly generated. We provide characterizations of near-openly generated groups using methods of inverse spectra and topological game theory. Bibliography: 24 titles.
Keywords: topological group, (nearly open) homomorphism, inverse spectrum, topological game, $\mathbb R$-factorizable group.
@article{SM_2020_211_2_a3,
     author = {V. M. Valov and K. L. Kozlov},
     title = {Spectral representations of topological groups and near-openly generated groups},
     journal = {Sbornik. Mathematics},
     pages = {258--274},
     publisher = {mathdoc},
     volume = {211},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_2_a3/}
}
TY  - JOUR
AU  - V. M. Valov
AU  - K. L. Kozlov
TI  - Spectral representations of topological groups and near-openly generated groups
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 258
EP  - 274
VL  - 211
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_2_a3/
LA  - en
ID  - SM_2020_211_2_a3
ER  - 
%0 Journal Article
%A V. M. Valov
%A K. L. Kozlov
%T Spectral representations of topological groups and near-openly generated groups
%J Sbornik. Mathematics
%D 2020
%P 258-274
%V 211
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2020_211_2_a3/
%G en
%F SM_2020_211_2_a3
V. M. Valov; K. L. Kozlov. Spectral representations of topological groups and near-openly generated groups. Sbornik. Mathematics, Tome 211 (2020) no. 2, pp. 258-274. http://geodesic.mathdoc.fr/item/SM_2020_211_2_a3/