Convex trigonometry with applications to sub-Finsler geometry
Sbornik. Mathematics, Tome 210 (2019) no. 8, pp. 1179-1205 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new convenient method for describing flat convex compact sets and their polar sets is proposed. It generalizes the classical trigonometric functions $\sin$ and $\cos$. It is apparent that this method can be very useful for an explicit description of solutions of optimal control problems with two-dimensional control. Using this method a series of sub-Finsler problems with two-dimensional control lying in an arbitrary convex set $\Omega$ is investigated. Namely, problems on the Heisenberg, Engel, and Cartan groups and also Grushin's and Martinet's cases are considered. Particular attention is paid to the case when $\Omega$ is a convex polygon. Bibliography: 13 titles.
Keywords: sub-Finsler geometry, polar set, trigonometric functions, convex analysis, physical pendulum equation.
@article{SM_2019_210_8_a4,
     author = {L. V. Lokutsievskiy},
     title = {Convex trigonometry with applications to {sub-Finsler} geometry},
     journal = {Sbornik. Mathematics},
     pages = {1179--1205},
     year = {2019},
     volume = {210},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_8_a4/}
}
TY  - JOUR
AU  - L. V. Lokutsievskiy
TI  - Convex trigonometry with applications to sub-Finsler geometry
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 1179
EP  - 1205
VL  - 210
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_8_a4/
LA  - en
ID  - SM_2019_210_8_a4
ER  - 
%0 Journal Article
%A L. V. Lokutsievskiy
%T Convex trigonometry with applications to sub-Finsler geometry
%J Sbornik. Mathematics
%D 2019
%P 1179-1205
%V 210
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2019_210_8_a4/
%G en
%F SM_2019_210_8_a4
L. V. Lokutsievskiy. Convex trigonometry with applications to sub-Finsler geometry. Sbornik. Mathematics, Tome 210 (2019) no. 8, pp. 1179-1205. http://geodesic.mathdoc.fr/item/SM_2019_210_8_a4/

[1] M. Gromov, “Groups of polynomial growth and expanding maps (with an appendix by J. Tits)”, Inst. Hautes Études Sci. Publ. Math., 53 (1981), 53–78 | DOI | MR | Zbl

[2] V. N. Berestovskii, “Homogeneous manifolds with intrinsic metric. I”, Siberian Math. J., 29:6 (1988), 887–897 | DOI | MR | Zbl

[3] H. Busemann, “The isoperimetric problem in the Minkowski plane”, Amer. J. Math., 69:4 (1947), 863–871 | DOI | MR | Zbl

[4] Yu. N. Kiselev, S. N. Avvakumov, “Obobschennaya zadacha Chaplygina: teoreticheskii analiz i chislennye eksperimenty”, Prikladnaya matematika i informatika. Tr. f-ta VMiK MGU im. M. V. Lomonosova, 2014, no. 46, 5–45

[5] A. V. Dmitruk, “On the development of Pontryagin's maximum principle in the works of A. Ya. Dubovitskii and A. A. Milyutin”, Control Cybernet., 38:4A (2009), 923–957 | MR | Zbl

[6] D. Barilari, U. Boscain, E. Le Donne, M. Sigalotti, “Sub-Finsler structures from the time-optimal control viewpoint for some nilpotent distributions”, J. Dyn. Control Syst., 23:3 (2017), 547–575 | DOI | MR | Zbl

[7] W. G. Scherwatow, Hyperbelfunktionen, Kleine Ergänzungsreihe Hochschulbüchern Math., 18, Berlin, VEB Deutscher Verlag Wissensch., 1956, 53 pp. | MR | Zbl | Zbl

[8] R. T. Rockafellar, Convex analysis, Princeton Landmarks Math., Reprint of the 1970 original, Princeton Univ. Press, Princeton, NJ, 1997, xviii+451 pp. | MR | Zbl | Zbl

[9] A. A. Agrachev, Yu. L. Sachkov, Control theory from the geometric viewpoint, Encyclopaedia Math. Sci., 87, Control theory and optimization II, Springer-Verlag, Berlin, 2004, xiv+412 pp. | DOI | MR | Zbl | Zbl

[10] Yu. L. Sachkov, “Exponential map in the generalized Dido problem”, Sb. Math., 194:9 (2003), 1331–1359 | DOI | DOI | MR | Zbl

[11] R. Montgomery, A tour of subriemannian geometries, their geodesics and applications, Math. Surveys Monogr., 91, Amer. Math. Soc., Providence, RI, 2002, xx+259 pp. | MR | Zbl

[12] A. A. Ardentov, Yu. L. Sachkov, “Extremal trajectories in a nilpotent sub-Riemannian problem on the Engel group”, Sb. Math., 202:11 (2011), 1593–1615 | DOI | DOI | MR | Zbl

[13] A. F. Filippov, Differential equations with discontinuous righthand sides, Math. Appl. (Soviet Ser.), 18, Kluwer Acad. Publ., Dordrecht, 1988, x+304 pp. | DOI | MR | MR | Zbl | Zbl