Convex trigonometry with applications to sub-Finsler geometry
Sbornik. Mathematics, Tome 210 (2019) no. 8, pp. 1179-1205

Voir la notice de l'article provenant de la source Math-Net.Ru

A new convenient method for describing flat convex compact sets and their polar sets is proposed. It generalizes the classical trigonometric functions $\sin$ and $\cos$. It is apparent that this method can be very useful for an explicit description of solutions of optimal control problems with two-dimensional control. Using this method a series of sub-Finsler problems with two-dimensional control lying in an arbitrary convex set $\Omega$ is investigated. Namely, problems on the Heisenberg, Engel, and Cartan groups and also Grushin's and Martinet's cases are considered. Particular attention is paid to the case when $\Omega$ is a convex polygon. Bibliography: 13 titles.
Keywords: sub-Finsler geometry, polar set, trigonometric functions, convex analysis, physical pendulum equation.
@article{SM_2019_210_8_a4,
     author = {L. V. Lokutsievskiy},
     title = {Convex trigonometry with applications to {sub-Finsler} geometry},
     journal = {Sbornik. Mathematics},
     pages = {1179--1205},
     publisher = {mathdoc},
     volume = {210},
     number = {8},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_8_a4/}
}
TY  - JOUR
AU  - L. V. Lokutsievskiy
TI  - Convex trigonometry with applications to sub-Finsler geometry
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 1179
EP  - 1205
VL  - 210
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_8_a4/
LA  - en
ID  - SM_2019_210_8_a4
ER  - 
%0 Journal Article
%A L. V. Lokutsievskiy
%T Convex trigonometry with applications to sub-Finsler geometry
%J Sbornik. Mathematics
%D 2019
%P 1179-1205
%V 210
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2019_210_8_a4/
%G en
%F SM_2019_210_8_a4
L. V. Lokutsievskiy. Convex trigonometry with applications to sub-Finsler geometry. Sbornik. Mathematics, Tome 210 (2019) no. 8, pp. 1179-1205. http://geodesic.mathdoc.fr/item/SM_2019_210_8_a4/