Isomorphisms and elementary equivalence of Chevalley groups over commutative rings
Sbornik. Mathematics, Tome 210 (2019) no. 8, pp. 1067-1091 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that two Chevalley groups with indecomposable root systems of rank $>1$ over commutative rings (which contain in addition $1/2$ for the types $\mathbf A_2$, $\mathbf B_l$, $\mathbf C_l$, $\mathbf F_4$, and $\mathbf G_2$, and $1/3$ for the type $\mathbf G_2$) are isomorphic or elementarily equivalent if and only if the corresponding root systems coincide, the weight lattices of the representation of the Lie algebra coincide, and the rings are isomorphic or elementarily equivalent, respectively. The isomorphisms of adjoint (elementary) Chevalley groups over the rings of the above types are also described. Bibliography: 25 titles.
Keywords: Chevalley groups over commutative rings, automorphisms, isomorphisms, elementary equivalence.
@article{SM_2019_210_8_a0,
     author = {E. I. Bunina},
     title = {Isomorphisms and elementary equivalence of {Chevalley} groups over commutative rings},
     journal = {Sbornik. Mathematics},
     pages = {1067--1091},
     year = {2019},
     volume = {210},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_8_a0/}
}
TY  - JOUR
AU  - E. I. Bunina
TI  - Isomorphisms and elementary equivalence of Chevalley groups over commutative rings
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 1067
EP  - 1091
VL  - 210
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_8_a0/
LA  - en
ID  - SM_2019_210_8_a0
ER  - 
%0 Journal Article
%A E. I. Bunina
%T Isomorphisms and elementary equivalence of Chevalley groups over commutative rings
%J Sbornik. Mathematics
%D 2019
%P 1067-1091
%V 210
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2019_210_8_a0/
%G en
%F SM_2019_210_8_a0
E. I. Bunina. Isomorphisms and elementary equivalence of Chevalley groups over commutative rings. Sbornik. Mathematics, Tome 210 (2019) no. 8, pp. 1067-1091. http://geodesic.mathdoc.fr/item/SM_2019_210_8_a0/

[1] E. I. Bunina, “Automorphisms of Chevalley groups of different types over commutative rings”, J. Algebra, 355:1 (2012), 154–170 | DOI | MR | Zbl

[2] E. I. Bunina, “Elementary equivalence of Chevalley groups over fields”, J. Math. Sci. (N.Y.), 152:2 (2008), 155–190 | DOI | MR | Zbl

[3] E. I. Bunina, “Elementary equivalence of Chevalley groups over local rings”, Sb. Math., 201:3 (2010), 321–337 | DOI | DOI | MR | Zbl

[4] E. I. Bunina, A. V. Mikhalev, A. G. Pinus, Elementarnaya i blizkie k nei logicheskie ekvivalentnosti klassicheskikh i universalnykh algebr, MTsNMO, M., 2015, 360 pp.

[5] J. E. Humphreys, Introduction to Lie algebras and representation theory, Grad. Texts in Math., 9, 2nd rev. print., Springer-Verlag, New York–Berlin, 1978, xii+171 pp. | DOI | MR | Zbl

[6] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Ch. IV: Groupes de Coxeter et systèmes de Tits. Ch. V: Groupes engendrés par des réflexions. Ch. VI: Systèmes de racines, Actualites Sci. Indust., 1337, Hermann, Paris, 1968, 288 pp. | MR | MR | Zbl | Zbl

[7] R. Steinberg, Lectures on Chevalley groups, Yale Univ., New Haven, CT, 1968, iii+277 pp. | MR | MR | Zbl | Zbl

[8] R. W. Carter, Simple groups of Lie type, Wiley Classics Lib., Reprint of 1972 original, John Wiley Sons, Inc., New York, 1989, x+335 pp. | MR | Zbl

[9] N. Vavilov, E. Plotkin, “Chevalley groups over commutative rings. I. Elementary calculations”, Acta Appl. Math., 45:1 (1996), 73–113 | DOI | MR | Zbl

[10] C. Chevalley, “Certain schémas des groupes semi-simples”, Séminaire Bourbaki, v. 6, Année 1960/61, Soc. Math. France, Paris, 1995, Exp. No. 219, 219–234 | MR | Zbl

[11] A. Borel, “Properties and linear representations of Chevalley groups”, Seminar on algebraic groups and related finite groups (Princeton, NJ, 1968/69), Lecture Notes in Math., 131, Springer, Berlin, 1970, 1–55 | MR | MR | Zbl | Zbl

[12] M. Demazure, P. Gabriel, Groupes algébriques, v. I, Géométrie algébrique, généralités, groupes commutatifs, Masson Cie, Éditeur, Paris; North-Holland Publ. Co., Amsterdam, 1970, xxvi+700 pp. | MR | Zbl

[13] N. A. Vavilov, “Structure of Chevalley groups over commutative rings”, Nonassociative algebras and related topics (Hiroshima, 1990), World Sci. Publ., River Edge, NJ, 1991, 219–335 | MR | Zbl

[14] E. Abe, K. Suzuki, “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J. (2), 28:2 (1976), 185–198 | DOI | MR | Zbl

[15] L. N. Vaserstein, “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J. (2), 38:2 (1986), 219–230 | DOI | MR | Zbl

[16] S. Shelah, “Every two elementarily equivalent models have isomorphic ultrapowers”, Israel J. Math, 10:2 (1971), 224–233 | DOI | MR | Zbl

[17] H. J. Keisler, “Ultraproducts and elementary classes”, Nederl. Akad. Wetensch. Proc. Ser. A, 64, = Indag. Math., 23 (1961), 477–495 | MR | Zbl

[18] E. I. Bunina, “Automorphisms of Chevalley groups of types $A_l$, $D_l$, or $E_l$ over local rings with 1/2”, J. Math. Sci. (N.Y.), 167:6 (2010), 749–766 | DOI | MR | Zbl

[19] E. I. Bunina, “Automorphisms of Chevalley groups of type $F_4$ over local rings with $1/2$”, J. Algebra, 323:8 (2010), 2270–2289 | DOI | MR | Zbl

[20] E. I. Bunina, “Automorphisms of Chevalley groups of types $B_2$ and $G_2$ over local rings”, J. Math. Sci. (N.Y.), 155:6 (2008), 795–814 | DOI | MR | Zbl

[21] E. I. Bunina, “Automorphisms of Chevalley groups of type $B_l$ over local rings with 1/2”, J. Math. Sci. (N.Y.), 169:5 (2010), 557–588 | DOI | MR | Zbl

[22] E. I. Bunina, “Automorphisms of Chevalley groups of types $A_l$, $D_l$, $E_l$ over local rings without 1/2”, J. Math. Sci. (N.Y.), 169:5 (2010), 589–613 | DOI | MR | Zbl

[23] E. I. Bunina, “Automorphisms of elementary adjoint Chevalley groups of types $A_l$, $D_l$, and $E_l$ over local rings with 1/2”, Algebra and Logic, 48:4 (2009), 250–267 | DOI | MR | Zbl

[24] A. A. Klyachko, “Automorphisms and isomorphisms of Chevalley groups and algebras”, J. Algebra, 324:10 (2010), 2608–2619 | DOI | MR | Zbl

[25] N. Bourbaki, Éléments de mathématique. Fasc. XXVII. Algèbre commutative. Ch. 1: Modules plats. Ch. 2: Localisation, Actualites Sci. Indust., 1290, Hermann, Paris, 1961, 187 pp. | MR | MR | Zbl | Zbl