Isomorphisms and elementary equivalence of Chevalley groups over commutative rings
Sbornik. Mathematics, Tome 210 (2019) no. 8, pp. 1067-1091

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that two Chevalley groups with indecomposable root systems of rank $>1$ over commutative rings (which contain in addition $1/2$ for the types $\mathbf A_2$, $\mathbf B_l$, $\mathbf C_l$, $\mathbf F_4$, and $\mathbf G_2$, and $1/3$ for the type $\mathbf G_2$) are isomorphic or elementarily equivalent if and only if the corresponding root systems coincide, the weight lattices of the representation of the Lie algebra coincide, and the rings are isomorphic or elementarily equivalent, respectively. The isomorphisms of adjoint (elementary) Chevalley groups over the rings of the above types are also described. Bibliography: 25 titles.
Keywords: Chevalley groups over commutative rings, automorphisms, isomorphisms, elementary equivalence.
@article{SM_2019_210_8_a0,
     author = {E. I. Bunina},
     title = {Isomorphisms and elementary equivalence of {Chevalley} groups over commutative rings},
     journal = {Sbornik. Mathematics},
     pages = {1067--1091},
     publisher = {mathdoc},
     volume = {210},
     number = {8},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_8_a0/}
}
TY  - JOUR
AU  - E. I. Bunina
TI  - Isomorphisms and elementary equivalence of Chevalley groups over commutative rings
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 1067
EP  - 1091
VL  - 210
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_8_a0/
LA  - en
ID  - SM_2019_210_8_a0
ER  - 
%0 Journal Article
%A E. I. Bunina
%T Isomorphisms and elementary equivalence of Chevalley groups over commutative rings
%J Sbornik. Mathematics
%D 2019
%P 1067-1091
%V 210
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2019_210_8_a0/
%G en
%F SM_2019_210_8_a0
E. I. Bunina. Isomorphisms and elementary equivalence of Chevalley groups over commutative rings. Sbornik. Mathematics, Tome 210 (2019) no. 8, pp. 1067-1091. http://geodesic.mathdoc.fr/item/SM_2019_210_8_a0/