@article{SM_2019_210_8_a0,
author = {E. I. Bunina},
title = {Isomorphisms and elementary equivalence of {Chevalley} groups over commutative rings},
journal = {Sbornik. Mathematics},
pages = {1067--1091},
year = {2019},
volume = {210},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2019_210_8_a0/}
}
E. I. Bunina. Isomorphisms and elementary equivalence of Chevalley groups over commutative rings. Sbornik. Mathematics, Tome 210 (2019) no. 8, pp. 1067-1091. http://geodesic.mathdoc.fr/item/SM_2019_210_8_a0/
[1] E. I. Bunina, “Automorphisms of Chevalley groups of different types over commutative rings”, J. Algebra, 355:1 (2012), 154–170 | DOI | MR | Zbl
[2] E. I. Bunina, “Elementary equivalence of Chevalley groups over fields”, J. Math. Sci. (N.Y.), 152:2 (2008), 155–190 | DOI | MR | Zbl
[3] E. I. Bunina, “Elementary equivalence of Chevalley groups over local rings”, Sb. Math., 201:3 (2010), 321–337 | DOI | DOI | MR | Zbl
[4] E. I. Bunina, A. V. Mikhalev, A. G. Pinus, Elementarnaya i blizkie k nei logicheskie ekvivalentnosti klassicheskikh i universalnykh algebr, MTsNMO, M., 2015, 360 pp.
[5] J. E. Humphreys, Introduction to Lie algebras and representation theory, Grad. Texts in Math., 9, 2nd rev. print., Springer-Verlag, New York–Berlin, 1978, xii+171 pp. | DOI | MR | Zbl
[6] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Ch. IV: Groupes de Coxeter et systèmes de Tits. Ch. V: Groupes engendrés par des réflexions. Ch. VI: Systèmes de racines, Actualites Sci. Indust., 1337, Hermann, Paris, 1968, 288 pp. | MR | MR | Zbl | Zbl
[7] R. Steinberg, Lectures on Chevalley groups, Yale Univ., New Haven, CT, 1968, iii+277 pp. | MR | MR | Zbl | Zbl
[8] R. W. Carter, Simple groups of Lie type, Wiley Classics Lib., Reprint of 1972 original, John Wiley Sons, Inc., New York, 1989, x+335 pp. | MR | Zbl
[9] N. Vavilov, E. Plotkin, “Chevalley groups over commutative rings. I. Elementary calculations”, Acta Appl. Math., 45:1 (1996), 73–113 | DOI | MR | Zbl
[10] C. Chevalley, “Certain schémas des groupes semi-simples”, Séminaire Bourbaki, v. 6, Année 1960/61, Soc. Math. France, Paris, 1995, Exp. No. 219, 219–234 | MR | Zbl
[11] A. Borel, “Properties and linear representations of Chevalley groups”, Seminar on algebraic groups and related finite groups (Princeton, NJ, 1968/69), Lecture Notes in Math., 131, Springer, Berlin, 1970, 1–55 | MR | MR | Zbl | Zbl
[12] M. Demazure, P. Gabriel, Groupes algébriques, v. I, Géométrie algébrique, généralités, groupes commutatifs, Masson Cie, Éditeur, Paris; North-Holland Publ. Co., Amsterdam, 1970, xxvi+700 pp. | MR | Zbl
[13] N. A. Vavilov, “Structure of Chevalley groups over commutative rings”, Nonassociative algebras and related topics (Hiroshima, 1990), World Sci. Publ., River Edge, NJ, 1991, 219–335 | MR | Zbl
[14] E. Abe, K. Suzuki, “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J. (2), 28:2 (1976), 185–198 | DOI | MR | Zbl
[15] L. N. Vaserstein, “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J. (2), 38:2 (1986), 219–230 | DOI | MR | Zbl
[16] S. Shelah, “Every two elementarily equivalent models have isomorphic ultrapowers”, Israel J. Math, 10:2 (1971), 224–233 | DOI | MR | Zbl
[17] H. J. Keisler, “Ultraproducts and elementary classes”, Nederl. Akad. Wetensch. Proc. Ser. A, 64, = Indag. Math., 23 (1961), 477–495 | MR | Zbl
[18] E. I. Bunina, “Automorphisms of Chevalley groups of types $A_l$, $D_l$, or $E_l$ over local rings with 1/2”, J. Math. Sci. (N.Y.), 167:6 (2010), 749–766 | DOI | MR | Zbl
[19] E. I. Bunina, “Automorphisms of Chevalley groups of type $F_4$ over local rings with $1/2$”, J. Algebra, 323:8 (2010), 2270–2289 | DOI | MR | Zbl
[20] E. I. Bunina, “Automorphisms of Chevalley groups of types $B_2$ and $G_2$ over local rings”, J. Math. Sci. (N.Y.), 155:6 (2008), 795–814 | DOI | MR | Zbl
[21] E. I. Bunina, “Automorphisms of Chevalley groups of type $B_l$ over local rings with 1/2”, J. Math. Sci. (N.Y.), 169:5 (2010), 557–588 | DOI | MR | Zbl
[22] E. I. Bunina, “Automorphisms of Chevalley groups of types $A_l$, $D_l$, $E_l$ over local rings without 1/2”, J. Math. Sci. (N.Y.), 169:5 (2010), 589–613 | DOI | MR | Zbl
[23] E. I. Bunina, “Automorphisms of elementary adjoint Chevalley groups of types $A_l$, $D_l$, and $E_l$ over local rings with 1/2”, Algebra and Logic, 48:4 (2009), 250–267 | DOI | MR | Zbl
[24] A. A. Klyachko, “Automorphisms and isomorphisms of Chevalley groups and algebras”, J. Algebra, 324:10 (2010), 2608–2619 | DOI | MR | Zbl
[25] N. Bourbaki, Éléments de mathématique. Fasc. XXVII. Algèbre commutative. Ch. 1: Modules plats. Ch. 2: Localisation, Actualites Sci. Indust., 1290, Hermann, Paris, 1961, 187 pp. | MR | MR | Zbl | Zbl