Naturally graded Lie algebras of slow growth
Sbornik. Mathematics, Tome 210 (2019) no. 6, pp. 862-909

Voir la notice de l'article provenant de la source Math-Net.Ru

A pro-nilpotent Lie algebra $\mathfrak g$ is said to be naturally graded if it is isomorphic to its associated graded Lie algebra $\operatorname{gr}\mathfrak g$ with respect to the filtration by the ideals in the lower central series. Finite-dimensional naturally graded Lie algebras are known in sub-Riemannian geometry and geometric control theory, where they are called Carnot algebras. We classify the finite-dimensional and infinite-dimensional naturally graded Lie algebras $\mathfrak g=\bigoplus_{i=1}^{+\infty}\mathfrak g_i$ with the property $$ \dim\mathfrak g_i+\dim\mathfrak g_{i+1}\leqslant3,\qquad i\geqslant1. $$ An arbitrary Lie algebra $\mathfrak g=\bigoplus_{i=1}^{+\infty}\mathfrak g_i$ of this class is generated by the two-dimensional subspace $\mathfrak g_1$, and the corresponding growth function $F_\mathfrak g^\mathrm{gr}(n)$ satisfies the bound $F_\mathfrak g^\mathrm{gr}(n)\leqslant3n/2+1$. Bibliography: 32 titles.
Keywords: graded Lie algebra, Carnot algebra, Kac-Moody algebras, central extension
Mots-clés : automorphism.
@article{SM_2019_210_6_a4,
     author = {D. V. Millionshchikov},
     title = {Naturally graded {Lie} algebras of slow growth},
     journal = {Sbornik. Mathematics},
     pages = {862--909},
     publisher = {mathdoc},
     volume = {210},
     number = {6},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_6_a4/}
}
TY  - JOUR
AU  - D. V. Millionshchikov
TI  - Naturally graded Lie algebras of slow growth
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 862
EP  - 909
VL  - 210
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_6_a4/
LA  - en
ID  - SM_2019_210_6_a4
ER  - 
%0 Journal Article
%A D. V. Millionshchikov
%T Naturally graded Lie algebras of slow growth
%J Sbornik. Mathematics
%D 2019
%P 862-909
%V 210
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2019_210_6_a4/
%G en
%F SM_2019_210_6_a4
D. V. Millionshchikov. Naturally graded Lie algebras of slow growth. Sbornik. Mathematics, Tome 210 (2019) no. 6, pp. 862-909. http://geodesic.mathdoc.fr/item/SM_2019_210_6_a4/