Naturally graded Lie algebras of slow growth
Sbornik. Mathematics, Tome 210 (2019) no. 6, pp. 862-909
Voir la notice de l'article provenant de la source Math-Net.Ru
A pro-nilpotent Lie algebra $\mathfrak g$ is said to be naturally graded if it is isomorphic to its associated graded Lie algebra $\operatorname{gr}\mathfrak g$ with respect to the filtration by the ideals in the lower central series. Finite-dimensional naturally graded Lie algebras are known in sub-Riemannian geometry and geometric control theory, where they are called Carnot algebras.
We classify the finite-dimensional and infinite-dimensional naturally graded Lie algebras $\mathfrak g=\bigoplus_{i=1}^{+\infty}\mathfrak g_i$ with the property
$$
\dim\mathfrak g_i+\dim\mathfrak g_{i+1}\leqslant3,\qquad i\geqslant1.
$$
An arbitrary Lie algebra $\mathfrak g=\bigoplus_{i=1}^{+\infty}\mathfrak g_i$ of this class is generated by the two-dimensional subspace $\mathfrak g_1$, and the corresponding growth function $F_\mathfrak g^\mathrm{gr}(n)$ satisfies the bound $F_\mathfrak g^\mathrm{gr}(n)\leqslant3n/2+1$.
Bibliography: 32 titles.
Keywords:
graded Lie algebra, Carnot algebra, Kac-Moody algebras, central extension
Mots-clés : automorphism.
Mots-clés : automorphism.
@article{SM_2019_210_6_a4,
author = {D. V. Millionshchikov},
title = {Naturally graded {Lie} algebras of slow growth},
journal = {Sbornik. Mathematics},
pages = {862--909},
publisher = {mathdoc},
volume = {210},
number = {6},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2019_210_6_a4/}
}
D. V. Millionshchikov. Naturally graded Lie algebras of slow growth. Sbornik. Mathematics, Tome 210 (2019) no. 6, pp. 862-909. http://geodesic.mathdoc.fr/item/SM_2019_210_6_a4/