Connectedness of the solution sets of inclusions
Sbornik. Mathematics, Tome 210 (2019) no. 6, pp. 836-861

Voir la notice de l'article provenant de la source Math-Net.Ru

A research scheme for investigating the connectedness of the set of solutions of an inclusion in a topological space is proposed. It is applied to analyze the fixed-point set of a Volterra set-valued map in the space of continuous functions $C$; conditions for it to be connected in the norm and weak topology of $C$ are obtained. On this basis conditions are found which ensure that the solution set of Hammerstein's delay integral inclusion is connected. Bibliography: 14 titles.
Keywords: connectedness, topological space, Volterra set-valued map, fixed point.
@article{SM_2019_210_6_a3,
     author = {E. S. Zhukovskiy},
     title = {Connectedness of the solution sets of inclusions},
     journal = {Sbornik. Mathematics},
     pages = {836--861},
     publisher = {mathdoc},
     volume = {210},
     number = {6},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_6_a3/}
}
TY  - JOUR
AU  - E. S. Zhukovskiy
TI  - Connectedness of the solution sets of inclusions
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 836
EP  - 861
VL  - 210
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_6_a3/
LA  - en
ID  - SM_2019_210_6_a3
ER  - 
%0 Journal Article
%A E. S. Zhukovskiy
%T Connectedness of the solution sets of inclusions
%J Sbornik. Mathematics
%D 2019
%P 836-861
%V 210
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2019_210_6_a3/
%G en
%F SM_2019_210_6_a3
E. S. Zhukovskiy. Connectedness of the solution sets of inclusions. Sbornik. Mathematics, Tome 210 (2019) no. 6, pp. 836-861. http://geodesic.mathdoc.fr/item/SM_2019_210_6_a3/