Connectedness of the solution sets of inclusions
Sbornik. Mathematics, Tome 210 (2019) no. 6, pp. 836-861
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A research scheme for investigating the connectedness of the set of solutions of an inclusion in a topological space is proposed. It is applied to analyze the fixed-point set of a Volterra set-valued map in the space of continuous functions $C$; conditions for it to be connected in the norm and weak topology of $C$ are obtained. On this basis conditions are found which ensure that the solution set of Hammerstein's delay integral inclusion is connected. Bibliography: 14 titles.
Keywords: connectedness, topological space, Volterra set-valued map, fixed point.
@article{SM_2019_210_6_a3,
     author = {E. S. Zhukovskiy},
     title = {Connectedness of the solution sets of inclusions},
     journal = {Sbornik. Mathematics},
     pages = {836--861},
     year = {2019},
     volume = {210},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_6_a3/}
}
TY  - JOUR
AU  - E. S. Zhukovskiy
TI  - Connectedness of the solution sets of inclusions
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 836
EP  - 861
VL  - 210
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_6_a3/
LA  - en
ID  - SM_2019_210_6_a3
ER  - 
%0 Journal Article
%A E. S. Zhukovskiy
%T Connectedness of the solution sets of inclusions
%J Sbornik. Mathematics
%D 2019
%P 836-861
%V 210
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2019_210_6_a3/
%G en
%F SM_2019_210_6_a3
E. S. Zhukovskiy. Connectedness of the solution sets of inclusions. Sbornik. Mathematics, Tome 210 (2019) no. 6, pp. 836-861. http://geodesic.mathdoc.fr/item/SM_2019_210_6_a3/

[1] M. A. Krasnoselskii, A. I. Perov, “O suschestvovanii reshenii u nekotorykh nelineinykh operatornykh uravnenii”, Dokl. AN SSSR, 126:1 (1959), 15–18 | MR | Zbl

[2] M. A. Krasnosel'skii, P. P. Zabreĭko, Geometrical methods of nonlinear analysis, Grundlehren Math. Wiss., 263, Springer-Verlag, Berlin, 1984, xix+409 pp. | MR | MR | Zbl | Zbl

[3] B. D. Gel'man, “Topological properties of the set of fixed points of a multivalued map”, Sb. Math., 188:12 (1997), 1761–1782 | DOI | DOI | MR | Zbl

[4] A. I. Bulgakov, L. N. Lyapin, “On the connectedness of the solution sets of functional inclusions”, Math. USSR-Sb., 47:1 (1984), 287–292 | DOI | MR | Zbl

[5] A. I. Bulgakov, L. N. Lyapin, “Some properties of the set of solutions of a Volterra–Hammerstein integral inclusion”, Differential Equations, 14:8 (1978), 1043–1048 | MR | Zbl

[6] D. O'Regan, “Topological structure of solution sets in Fréchet spaces: the projective limit approach”, J. Math. Anal. Appl., 324:2 (2006), 1370–1380 | DOI | MR | Zbl

[7] O. Ya. Viro, O. A. Ivanov, N. Yu. Netsvetaev, V. M. Kharlamov, Elementary topology. Problem textbook, Amer. Math. Soc., Providence, RI, 2008, xx+400 pp. | DOI | MR | Zbl

[8] K. Kuratowski, Topology, v. II, New ed., rev. and augm., Academic Press, New York–London; Państwowe Wydawnictwo Naukowe Polish Scientific Publishers, Warsaw, 1968, xiv+608 pp. | MR | MR

[9] A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, v. I, II, Graylock Press, Albany, NY, 1957, 1961, ix+129 pp., ix+128 pp. | MR | MR | MR | Zbl | Zbl

[10] J. L. Kelley, General topology, D. Van Nostrand Company, Inc., Toronto–New York–London, 1955, xiv+298 pp. | MR | MR | Zbl | Zbl

[11] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovskii, Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, Izd. 2-e, ispr. i dop., Librokom, M., 2011, 224 pp. | MR | Zbl

[12] L. V. Kantorovich, G. P. Akilov, Functional analysis, Pergamon Press, Oxford–Elmsford, NY, 1982, xiv+589 pp. | MR | MR | Zbl | Zbl

[13] A. N. Tikhonov, “O funktsionalnykh uravneniyakh tipa Volterra i ikh primeneniyakh k nekotorym zadacham matematicheskoi fiziki”, Byul. Mosk. un-ta. Sekts. A, 1:8 (1938), 1–25 | Zbl

[14] N. Ya. Vilenkin, E. A. Gorin, A. G. Kostyuchenko, S. G. Krasnosel'skiĭ, S. G. Kreĭn, V. P. Maslov, B. S. Mityagin, Yu. I. Petunin, Ya. B. Rutitskiĭ, V. I. Sobolev, V. Ya. Stetsenko, L. D. Faddeev, E. S. Tsitlanadze, Functional analysis, Wolters-Noordhoff Publishing, Groningen, 1972, xv+380 pp. | MR | MR | Zbl | Zbl