@article{SM_2019_210_5_a2,
author = {P. I. Naumkin},
title = {Time decay estimates for solutions of the {Cauchy} problem for the modified {Kawahara} equation},
journal = {Sbornik. Mathematics},
pages = {693--730},
year = {2019},
volume = {210},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2019_210_5_a2/}
}
P. I. Naumkin. Time decay estimates for solutions of the Cauchy problem for the modified Kawahara equation. Sbornik. Mathematics, Tome 210 (2019) no. 5, pp. 693-730. http://geodesic.mathdoc.fr/item/SM_2019_210_5_a2/
[1] Shang Bin Cui, Dong Gao Deng, Shuang Ping Tao, “Global existence of solutions for the Cauchy problem of the Kawahara equation with $L^{2}$ initial data”, Acta Math. Sin. (Engl. Ser.), 22:5 (2006), 1457–1466 | DOI | MR | Zbl
[2] M. V. Fedoryuk, Asimptotika: integraly i ryady, Nauka, M., 1987, 544 pp. | MR | Zbl
[3] N. Hayashi, “Global existence of small solutions to quadratic nonlinear Schrödinger equations”, Comm. Partial Differential Equations, 18:7-8 (1993), 1109–1124 | DOI | MR | Zbl
[4] N. Hayashi, P. I. Naumkin, “The initial value problem for the cubic nonlinear Klein–Gordon equation”, Z. Angew. Math. Phys., 59:6 (2008), 1002–1028 | DOI | MR | Zbl
[5] N. Hayashi, P. I. Naumkin, “Factorization technique for the fourth-order nonlinear Schrödinger equation”, Z. Angew. Math. Phys., 66:5 (2015), 2343–2377 | DOI | MR | Zbl
[6] N. Hayashi, P. I. Naumkin, “On the inhomogeneous fourth-order nonlinear Schrödinger equation”, J. Math. Phys., 56:9 (2015), 093502, 25 pp. | DOI | MR | Zbl
[7] N. Hayashi, P. I. Naumkin, “Factorization technique for the modified Korteweg–de Vries equation”, SUT J. Math., 52:1 (2016), 49–95 | MR | Zbl
[8] N. Hayashi, T. Ozawa, “Scattering theory in the weighted $L^2(\mathbf R^{n})$ spaces for some Schrödinger equations”, Ann. Inst. H. Poincaré Phys. Théor., 48:1 (1988), 17–37 | MR | Zbl
[9] A. T. Il'ichev, A. Yu. Semenov, “Stability of solitary waves in dispersive media described by a fifth-order evolution equation”, Theoret. Comput. Fluid Dyn., 3:6 (1992), 307–326 | DOI | Zbl
[10] T. Kawahara, “Oscillatory solitary waves in dispersive media”, J. Phys. Soc. Japan, 33:1 (1972), 260–264 | DOI
[11] S. Kichenassamy, P. J. Olver, “Existence and nonexistence of solitary wave solutions to higher-order model evolution equations”, SIAM J. Math. Anal., 23:5 (1992), 1141–1166 | DOI | MR | Zbl
[12] S. Klainerman, “Long-time behavior of solutions to nonlinear evolution equations”, Arch. Rational Mech. Anal., 78:1 (1982), 73–98 | DOI | MR | Zbl
[13] S. Klainerman, G. Ponce, “Global, small amplitude solutions to nonlinear evolution equations”, Comm. Pure Appl. Math., 36:1 (1983), 133–141 | DOI | MR | Zbl
[14] I. P. Naumkin, “Sharp asymptotic behavior of solutions for cubic nonlinear Schrödinger equations with a potential”, J. Math. Phys., 57:5 (2016), 051501, 31 pp. | DOI | MR | Zbl
[15] I. P. Naumkin, “Initial-boundary value problem for the one dimensional Thirring model”, J. Differential Equations, 261:8 (2016), 4486–4523 | DOI | MR | Zbl
[16] E. M. Stein, R. Shakarchi, Functional analysis. Introduction to further topics in analysis, Princeton Lect. Anal., 4, Princeton Univ. Press, Princeton, NJ, 2011, xviii+423 pp. | MR | Zbl
[17] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Yu. D. Pletner, Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007, 734 pp. | Zbl
[18] Hua Wang, Shang Bin Cui, Dong Gao Deng, “Global existence of solutions for the Kawahara equation in Sobolev spaces of negative indices”, Acta Math. Sin. (Engl. Ser.), 23:8 (2007), 1435–1446 | DOI | MR | Zbl
[19] Guixiang Xu, “The Cauchy problem of the modified Kawahara equation”, J. Partial Differential Equations, 19:2 (2006), 126–146 | MR | Zbl