Equivalence of the trigonometric system and its perturbations in the spaces $L^p$ and~$C$
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 210 (2019) no. 4, pp. 606-624
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $B=B[-\pi,\pi]$ be any of the spaces $L^p(-\pi,\pi)$, $1\leq p\infty$, $p\neq2$, and $C[-\pi,\pi]$, and let $B_a=B[-\pi+a,\pi+a]$, $a\in\mathbb R$. A number of necessary conditions and sufficient conditions for the ‘perturbed trigonometric system’ $e^{i(n+\alpha_n)t}$, $n\in\mathbb Z$, to be equivalent to the trigonometric system $e^{int}$, $n\in\mathbb Z$, in the space $B_a$ for any $a\in\mathbb R$ are obtained. In particular, it is shown that if $(\alpha_n)\in l^s$, where $1/s=|1/p-1/2|$, then this equivalence takes place, the exponent $s$ being sharp. This result is used to show that in $L^p(-\pi,\pi)$, $1$, there exist bases of exponentials which are not equivalent to the trigonometric basis. 
The machinery of Fourier multipliers is used in the proofs. 
Bibliography: 18 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
equivalent systems of functions, basis
Mots-clés : Fourier multiplier.
                    
                  
                
                
                Mots-clés : Fourier multiplier.
@article{SM_2019_210_4_a6,
     author = {A. M. Sedletskii},
     title = {Equivalence of the trigonometric system and its perturbations in the spaces $L^p$ and~$C$},
     journal = {Sbornik. Mathematics},
     pages = {606--624},
     publisher = {mathdoc},
     volume = {210},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_4_a6/}
}
                      
                      
                    A. M. Sedletskii. Equivalence of the trigonometric system and its perturbations in the spaces $L^p$ and~$C$. Sbornik. Mathematics, Tome 210 (2019) no. 4, pp. 606-624. http://geodesic.mathdoc.fr/item/SM_2019_210_4_a6/
