Convergence of spline interpolation processes and conditionality of systems of equations for spline construction
Sbornik. Mathematics, Tome 210 (2019) no. 4, pp. 550-564 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This study is a continuation of research on the convergence of interpolation processes with classical polynomial splines of odd degree. It is proved that the problem of good conditionality of a system of equations for interpolation spline construction via coefficients of the expansion of the $k$th derivative in $B$-splines is equivalent to the problem of convergence of the interpolation process for the $k$th spline derivative in the class of functions with continuous $k$th derivatives. It is established that for interpolation with splines of degree $2n-1$, the conditions that the projectors corresponding to the derivatives of orders $k$ and $2n-1-k$ be bounded are equivalent. Bibliography: 26 titles.
Keywords: splines, projector norm, construction algorithms, conditionality.
Mots-clés : interpolation, convergence
@article{SM_2019_210_4_a3,
     author = {Yu. S. Volkov},
     title = {Convergence of spline interpolation processes and conditionality of systems of equations for spline construction},
     journal = {Sbornik. Mathematics},
     pages = {550--564},
     year = {2019},
     volume = {210},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_4_a3/}
}
TY  - JOUR
AU  - Yu. S. Volkov
TI  - Convergence of spline interpolation processes and conditionality of systems of equations for spline construction
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 550
EP  - 564
VL  - 210
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_4_a3/
LA  - en
ID  - SM_2019_210_4_a3
ER  - 
%0 Journal Article
%A Yu. S. Volkov
%T Convergence of spline interpolation processes and conditionality of systems of equations for spline construction
%J Sbornik. Mathematics
%D 2019
%P 550-564
%V 210
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2019_210_4_a3/
%G en
%F SM_2019_210_4_a3
Yu. S. Volkov. Convergence of spline interpolation processes and conditionality of systems of equations for spline construction. Sbornik. Mathematics, Tome 210 (2019) no. 4, pp. 550-564. http://geodesic.mathdoc.fr/item/SM_2019_210_4_a3/

[1] J. H. Ahlberg, E. N. Nilson, J. L. Walsh, The theory of splines and their applications, Academic Press, New York–London, 1967, xi+284 pp. | MR | Zbl | Zbl

[2] On approximation theory [Über Approximationstheorie] (Oberwolfach, 1963), Internat. Ser. Numer. Math., 5, eds. P. L. Butzer, J. Korevaar, Birkhäuser Verlag, Basel–Stuttgart, 1964, xvi+261 pp. | DOI | MR | Zbl

[3] C. de Boor, “On bounding spline interpolation”, J. Approximation Theory, 14:3 (1975), 191–203 | DOI | MR | Zbl

[4] Yu. S. Volkov, “Raskhodimost interpolyatsionnykh splainov nechetnoi stepeni”, Priblizhenie splainami, Vychislitelnye sistemy, 106, IM SO AN SSSR, Novosibirsk, 1984, 41–56 | MR | Zbl

[5] A. Yu. Shadrin, “The $L_\infty$-norm of the $L_2$-spline projector is bounded independently of the knot sequence: a proof of de Boor's conjecture”, Acta Math., 187:1 (2001), 59–137 | DOI | MR | Zbl

[6] Yu. S. Volkov, “Unconditional convergence of one more middle derivative for odd degree spline interpolation”, Dokl. Math., 71:2 (2005), 250–252 | MR | Zbl

[7] Yu. S. Volkov, “Inverses of cyclic band matrices and the convergence of interpolation processes for derivatives of periodic interpolation splines”, Numer. Anal. Appl., 3:3 (2010), 199–207 | DOI | Zbl

[8] Yu. S. Volkov, “Convergence analysis of an interpolation process for the derivatives of a complete spline”, J. Math. Sci. (N.Y.), 187:1 (2012), 101–214 | DOI | MR | Zbl

[9] Yu. S. Volkov, Yu. N. Subbotin, “Fifty years of Schoenberg's problem on the convergence of spline interpolation”, Proc. Steklov Inst. Math. (Suppl.), 288, suppl. 1 (2015), 222–237 | DOI | MR | Zbl

[10] Yu. S. Zavyalov, B. I. Kvasov, V. L. Miroshnichenko, Metody splain-funktsii, Nauka, M., 1980, 352 pp. | MR | Zbl

[11] J. H. Ahlberg, E. N. Nilson, “Convergence properties of the spline fit”, J. Soc. Indust. Appl. Math., 11:1 (1963), 95–104 | DOI | MR | Zbl

[12] Yu. S. Volkov, “O postroenii interpolyatsionnykh polinomialnykh splainov”, Splain-funktsii i ikh prilozheniya, Vychislitelnye sistemy, 159, IM SO RAN, Novosibirsk, 1997, 3–18 | MR

[13] Yu. S. Volkov, “Totaly positive matrices in the methods of constructing interpolation splines of odd degree”, Siberian Adv. Math., 15:4 (2005), 96–125 | MR | Zbl

[14] L. L. Schumaker, Spline functions: basic theory, Pure Appl. Math., John Wiley Sons, Inc., New York, 1981, xiv+553 pp. | MR | Zbl

[15] C. de Boor, A practical guide to splines, Appl. Math. Sci., 27, Springer-Verlag, New York–Berlin, 1978, xxiv+392 pp. | MR | MR | Zbl

[16] C. de Boor, “Splines as linear combinations of $B$-splines. A survey”, Approximation theory II (Austin, Tex., 1976), Academic Press, New York, 1976, 1–47 | MR | Zbl

[17] R. A. DeVore, G. G. Lorentz, Constructive approximation, Grundlehren Math. Wiss., 303, Springer-Verlag, Berlin, 1993, x+449 pp. | MR | Zbl

[18] Yu. S. Volkov, “O nakhozhdenii polnogo interpolyatsionnogo splaina cherez $B$-splainy”, Sib. elektron. matem. izv., 5 (2008), 334–338 | MR | Zbl

[19] Yu. S. Volkov, “Obtaining a banded system of equations in complete spline interpolation problem via $B$-spline basis”, Cent. Eur. J. Math., 10:1 (2012), 352–356 | DOI | MR | Zbl

[20] A. I. Rozhenko, Teoriya i algoritmy variatsionnoi splain-approksimatsii, IVMiMG SO RAN, Novosibirsk, 2005, 244 pp.

[21] C. de Boor, “Bounding the error in spline interpolation”, SIAM Rev., 16:4 (1974), 531–544 | DOI | MR | Zbl

[22] S. Demko, “Inverses of band matrices and local convergence of spline projections”, SIAM J. Numer. Anal., 14:4 (1977), 616–619 | DOI | MR | Zbl

[23] N. L. Zmatrakov, “Convergence of an interpolation process for parabolic and cubic splines”, Proc. Steklov Inst. Math., 138 (1977), 75–99 | MR | Zbl

[24] N. L. Zmatrakov, “Ravnomernaya skhodimost tretikh proizvodnykh interpolyatsionnykh kubicheskikh splainov”, Metody splain-funktsii, Vychislitelnye sistemy, 72, IM SO AN SSSR, Novosibirsk, 1977, 10–29 | MR | Zbl

[25] C. de Boor, “On the convergence of odd-degree spline interpolation”, J. Approximation Theory, 1:4 (1968), 452–463 | DOI | MR | Zbl

[26] Yu. S. Volkov, V. L. Miroshnichenko, “Norm estimates for the inverses of matrices of monotone type and totally positive matrices”, Siberian Math. J., 50:6 (2009), 982–987 | DOI | MR | Zbl