The foundations of $(2n,k)$-manifolds
Sbornik. Mathematics, Tome 210 (2019) no. 4, pp. 508-549

Voir la notice de l'article provenant de la source Math-Net.Ru

The focus of our paper is a system of axioms that serves as a basis for introducing structural data for $(2n,k)$-manifolds $M^{2n}$, where $M^{2n}$ is a smooth, compact $2n$-dimensional manifold with a smooth effective action of the $k$-dimensional torus $T^k$. In terms of these data a construction of a model space $\mathfrak E$ with an action of the torus $T^k$ is given such that there exists a $T^k$-equivariant homeomorphism $\mathfrak E\to M^{2n}$. This homeomorphism induces a homeomorphism $\mathfrak E/T^k\to M^{2n}/T^k$. The number $d=n-k$ is called the complexity of a $(2n,k)$-manifold. Our theory comprises toric geometry and toric topology, where $d=0$. It is shown that the class of homogeneous spaces $G/H$ of compact Lie groups, where $\operatorname{rk}G=\operatorname{rk}H$, contains $(2n,k)$-manifolds that have nonzero complexity. The results are demonstrated on the complex Grassmann manifolds $G_{k+1,q}$ with an effective action of the torus $T^k$. Bibliography: 23 titles.
Keywords: toric topology, manifolds with torus action, complex Grassmann manifold.
Mots-clés : orbit space, moment map
@article{SM_2019_210_4_a2,
     author = {V. M. Buchstaber and S. Terzi\'c},
     title = {The foundations of $(2n,k)$-manifolds},
     journal = {Sbornik. Mathematics},
     pages = {508--549},
     publisher = {mathdoc},
     volume = {210},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_4_a2/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - S. Terzić
TI  - The foundations of $(2n,k)$-manifolds
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 508
EP  - 549
VL  - 210
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_4_a2/
LA  - en
ID  - SM_2019_210_4_a2
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A S. Terzić
%T The foundations of $(2n,k)$-manifolds
%J Sbornik. Mathematics
%D 2019
%P 508-549
%V 210
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2019_210_4_a2/
%G en
%F SM_2019_210_4_a2
V. M. Buchstaber; S. Terzić. The foundations of $(2n,k)$-manifolds. Sbornik. Mathematics, Tome 210 (2019) no. 4, pp. 508-549. http://geodesic.mathdoc.fr/item/SM_2019_210_4_a2/