The foundations of $(2n,k)$-manifolds
Sbornik. Mathematics, Tome 210 (2019) no. 4, pp. 508-549 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The focus of our paper is a system of axioms that serves as a basis for introducing structural data for $(2n,k)$-manifolds $M^{2n}$, where $M^{2n}$ is a smooth, compact $2n$-dimensional manifold with a smooth effective action of the $k$-dimensional torus $T^k$. In terms of these data a construction of a model space $\mathfrak E$ with an action of the torus $T^k$ is given such that there exists a $T^k$-equivariant homeomorphism $\mathfrak E\to M^{2n}$. This homeomorphism induces a homeomorphism $\mathfrak E/T^k\to M^{2n}/T^k$. The number $d=n-k$ is called the complexity of a $(2n,k)$-manifold. Our theory comprises toric geometry and toric topology, where $d=0$. It is shown that the class of homogeneous spaces $G/H$ of compact Lie groups, where $\operatorname{rk}G=\operatorname{rk}H$, contains $(2n,k)$-manifolds that have nonzero complexity. The results are demonstrated on the complex Grassmann manifolds $G_{k+1,q}$ with an effective action of the torus $T^k$. Bibliography: 23 titles.
Keywords: toric topology, manifolds with torus action, complex Grassmann manifold.
Mots-clés : orbit space, moment map
@article{SM_2019_210_4_a2,
     author = {V. M. Buchstaber and S. Terzi\'c},
     title = {The foundations of $(2n,k)$-manifolds},
     journal = {Sbornik. Mathematics},
     pages = {508--549},
     year = {2019},
     volume = {210},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_4_a2/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - S. Terzić
TI  - The foundations of $(2n,k)$-manifolds
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 508
EP  - 549
VL  - 210
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_4_a2/
LA  - en
ID  - SM_2019_210_4_a2
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A S. Terzić
%T The foundations of $(2n,k)$-manifolds
%J Sbornik. Mathematics
%D 2019
%P 508-549
%V 210
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2019_210_4_a2/
%G en
%F SM_2019_210_4_a2
V. M. Buchstaber; S. Terzić. The foundations of $(2n,k)$-manifolds. Sbornik. Mathematics, Tome 210 (2019) no. 4, pp. 508-549. http://geodesic.mathdoc.fr/item/SM_2019_210_4_a2/

[1] M. F. Atiyah, “Convexity and commuting Hamiltonians”, Bull. London Math. Soc., 14:1 (1982), 1–15 | DOI | MR | Zbl

[2] A. Ayzenberg, Torus action of complexity one and their local properties, arXiv: 1802.08828

[3] G. E. Bredon, Introduction to compact transformation groups, Pure Appl. Math., 46, Academic Press, New York–London, 1972, xiii+459 pp. | MR | MR | Zbl | Zbl

[4] V. M. Buchstaber, T. E. Panov, Torus actions and their applications in topology and combinatorics, Univ. Lecture Ser., 24, Amer. Math. Soc., Providence, RI, 2002, viii+144 pp. | DOI | MR | Zbl

[5] V. M. Buchstaber, S. Terzić, “$(2n, k)$-manifolds and applications”, in Report No. 27/2014 ‘Okounkov bodies and applications’, Oberwolfach Rep., 11:2 (2014), 1469–1472 | DOI | MR | Zbl

[6] V. M. Buchstaber, S. Terzić, “Topology and geometry of the canonical action of $T^4$ on the complex Grassmannian $G_{4,2}$ and the complex projective space $CP^{5}$”, Mosc. Math. J., 16:2 (2016), 237–273 | DOI | MR | Zbl

[7] V. M. Buchstaber, S. Terzić, Toric topology of the compex Grassmann manifolds, arXiv: 1802.06449

[8] M. Erné, “The ABC of order and topology”, Category theory at work (Bremen, 1990), Res. Exp. Math., 18, Heldermann, Berlin, 1991, 57–83 | MR | Zbl

[9] M. W. Davis, T. Januszkiewicz, “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl

[10] V. Guillemin, V. Sternberg, “Convexity properties of the moment mapping”, Invent. Math., 67:3 (1982), 491–513 | DOI | MR | Zbl

[11] L. M. Fehér, A. Némethi, R. Rimányi, “Equivariant classes of matrix matroid varieties”, Comment. Math. Helv., 87:4 (2012), 861–889 | DOI | MR | Zbl

[12] N. Ford, “The expected codimension of a matroid variety”, J. Algebr. Combin., 41:1 (2015), 29–47 | DOI | MR | Zbl

[13] I. M. Gelfand, R. D. MacPherson, “Geometry in Grassmannians and a generalization of the dilogarithm”, Adv. in Math., 44:3 (1982), 279–312 | DOI | MR | Zbl

[14] I. M. Gel'fand, V. V. Serganova, “Combinatorial geometries and torus strata on homogeneous compact manifolds”, Russian Math. Surveys, 42:2 (1987), 133–168 | DOI | MR | Zbl

[15] I. M. Gelfand, R. M. Goresky, R. D. MacPherson, V. V. Serganova, “Combinatorial geometries, convex polyhedra, and Schubert cells”, Adv. in Math., 63:3 (1987), 301–316 | DOI | MR | Zbl

[16] M. M. Kapranov, “Chow quotients of Grassmannians. I”, I. M. Gel'fand seminar, Adv. Soviet Math., 16, Part 2, Amer. Math. Soc., Providence, RI, 1993, 29–110 | MR | Zbl

[17] M. M. Kapranov, “Veronese curves and Grothendieck–Knudsen moduli space $\overline{M}_{0,n}$”, J. Algebraic Geom., 2:2 (1993), 239–262 | MR | Zbl

[18] Y. Karshon, S. Tolman, “Classification of Hamiltonian torus actions with two-dimensional quotients”, Geom. Topol., 18:2 (2014), 669–716 | DOI | MR | Zbl

[19] E. Katz, “Matroid theory for algebraic geometers”, Nonarchimedean and tropical geometry, Simons Symp., Springer, Cham, 2016, 435–517 | DOI | MR | Zbl

[20] S. Keel, J. Tevelev, “Geometry of Chow quotients of Grassmannians”, Duke Math. J., 134:2 (2006), 259–311 | DOI | MR | Zbl

[21] F. C. Kirwan, Cohomology of quotients in symplectic and algebraic geometry, Math. Notes, 31, Princeton Univ. Press, Princeton, NJ, 1984, i+211 pp. | MR | Zbl

[22] D. Timashev, “Torus actions of complexity one”, Toric topology, Contemp. Math., 460, Amer. Math. Soc., Providence, RI, 2008, 349–364 | DOI | MR | Zbl

[23] G. M. Ziegler, Lectures on polytopes, Grad. Texts in Math., 152, Springer-Verlag, New York, 1995, x+370 pp. | DOI | MR | Zbl