Eigenvalue asymptotics of long Kirchhoff plates with clamped edges
Sbornik. Mathematics, Tome 210 (2019) no. 4, pp. 473-494
Voir la notice de l'article provenant de la source Math-Net.Ru
Asymptotic expansions are constructed for the eigenvalues and eigenfunctions of the Dirichlet problem for the biharmonic operator in thin domains (Kirchhoff plates with clamped edges). For a rectangular plate the leading terms are asymptotically determined from the Dirichlet problem for a second-order ordinary differential equation, while for a $\mathsf T$-junction of plates they are determined from another limiting problem in an infinite waveguide formed by three half-strips in the shape of a letter $\mathsf T$ and describing a boundary-layer phenomenon. Open questions are stated for which the method developed gives no answer.
Bibliography: 33 titles.
Keywords:
Kirchhoff plate, eigenvalues and eigenfunctions, asymptotic behaviour, dimension reduction, boundary layer.
@article{SM_2019_210_4_a0,
author = {F. L. Bakharev and S. A. Nazarov},
title = {Eigenvalue asymptotics of long {Kirchhoff} plates with clamped edges},
journal = {Sbornik. Mathematics},
pages = {473--494},
publisher = {mathdoc},
volume = {210},
number = {4},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2019_210_4_a0/}
}
F. L. Bakharev; S. A. Nazarov. Eigenvalue asymptotics of long Kirchhoff plates with clamped edges. Sbornik. Mathematics, Tome 210 (2019) no. 4, pp. 473-494. http://geodesic.mathdoc.fr/item/SM_2019_210_4_a0/