@article{SM_2019_210_4_a0,
author = {F. L. Bakharev and S. A. Nazarov},
title = {Eigenvalue asymptotics of long {Kirchhoff} plates with clamped edges},
journal = {Sbornik. Mathematics},
pages = {473--494},
year = {2019},
volume = {210},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2019_210_4_a0/}
}
F. L. Bakharev; S. A. Nazarov. Eigenvalue asymptotics of long Kirchhoff plates with clamped edges. Sbornik. Mathematics, Tome 210 (2019) no. 4, pp. 473-494. http://geodesic.mathdoc.fr/item/SM_2019_210_4_a0/
[1] P. G. Ciarlet, Plates and junctions in elastic multi-structures. An asymptotic analysis, Rech. Math. Appl., 14, Masson, Paris; Springer-Verlag, Berlin, 1990, viii+215 pp. | MR | Zbl
[2] J. Sanchez-Hubert, É. Sanchez-Palencia, Coques élastiques minces. Propriétés asymptotiques, Rech. Math. Appl., Masson, Paris, 1997, xix+376 pp. | Zbl
[3] V. Maz'ya, S. Nazarov, B. Plamenevskii, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. 1, 2, Oper. Theory Adv. Appl., 111, 112, Birkhäuser Verlag, Basel, 2000, xxiv+435 pp., xxiv+323 pp. | MR | MR | Zbl
[4] S. A. Nazarov, Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2002, 406 pp.
[5] G. Panasenko, Multi-scale modelling for structures and composites, Springer, Dordrecht, 2005, xiv+398 pp. | DOI | MR | Zbl
[6] O. Post, Spectral analysis on graph-like spaces, Lecture Notes in Math., 2039, Springer, Heidelberg, 2012, xvi+431 pp. | DOI | MR | Zbl
[7] P. Exner, H. Kovar̆ík, Quantum waveguides, Theoret. Math. Phys., 22, Springer, Cham, 2015, xxii+382 pp. | DOI | MR | Zbl
[8] A. Gaudiello, G. Panasenko, A. Piatnitski, “Asymptotic analysis and domain decomposition for a biharmonic problem in a thin multi-structure”, Commun. Contemp. Math., 18:5 (2016), 1550057, 27 pp. | DOI | MR | Zbl
[9] S. A. Nazarov, “Asymptotics of the deflection of a cruciform junction of two narrow Kirchhoff plates”, Comput. Math. Math. Phys., 58:7 (2018), 1150–1171 | DOI | DOI | MR | Zbl
[10] S. A. Nazarov, “The asymptotics of natural oscillations of a long two-dimensional Kirchhoff plate with variable cross-section”, Sb. Math., 209:9 (2018), 1287–1336 | DOI | DOI | MR | Zbl
[11] S. A. Nazarov, “General averaging procedure for selfadjoint elliptic systems in many-dimensional domains, including thin ones”, St. Petersburg Math. J., 7:5 (1996), 681–748 | MR | Zbl
[12] S. A. Nazarov, “The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes”, Russian Math. Surveys, 54:5 (1999), 947–1014 | DOI | DOI | MR | Zbl
[13] I. C. Gohberg, M. G. Krein, Introduction to the theory of linear nonselfadjoint operators in Hilbert space, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, R.I., 1969, xv+378 pp. | MR | MR | Zbl | Zbl
[14] S. A. Nazarov, “Self-adjoint elliptic boundary-value problems. The polynomial property and formally positive operators”, J. Math. Sci. (N. Y.), 92:6 (1998), 4338–4353 | DOI | MR | Zbl
[15] V. A. Kondrat'ev, “Boundary problems for elliptic equations in domains with conical or angular points”, Trans. Moscow Math. Soc., 16, Amer. Math. Soc., Providence, RI, 1967, 227–313 | MR | Zbl
[16] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, De Gruyter Exp. Math., 13, Walter de Gruyter Co., Berlin, 1994, viii+525 pp. | DOI | MR | Zbl
[17] S. G. Mikhlin, Variatsionnye metody v matematicheskoi fizike, 2-e izd., ispr. i dop., Nauka, M., 1970, 512 pp. ; S. G. Mikhlin, Variational methods in mathematical physics, A Pergamon Press Book The Macmillan Co., New York, 1964, xxxii+582 pp. | MR | Zbl | MR | Zbl
[18] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Leningr. un-ta, L., 1980, 264 pp. ; M. Sh. Birman, M. Z. Solomyak, Spectral theory of self-adjoint operators in Hilbert space, Math. Appl. (Soviet Ser.), 5, D. Reidel Publishing Co., Dordrecht, 1987, xv+301 pp. | MR | Zbl | MR
[19] M. L. Williams, “Stress singularities resulting from various boundary conditions in angular corners of plate in extension”, J. Appl. Mech., 19:2 (1952), 526–528 https://authors.library.caltech.edu/47672/
[20] C. De Coster, S. Nicaise, G. Sweers, “Solving the biharmonic Dirichlet problem on domains with corners”, Math. Nach., 288:8-9 (2015), 854–871 | DOI | MR | Zbl
[21] M. I. Vishik, L. A. Lyusternik, “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, UMN, 12:5(77) (1957), 3–122 ; M. I. Višik, L. A. Ljusternik, “Regular degeneration and boundary layer for linear differential equations with small parameter”, Amer. Math. Soc. Transl. (2), 20 (1962), 239–364 | MR | Zbl | DOI | MR | Zbl
[22] S. A. Nazarov, “Ogranichennye resheniya v $\mathrm{T}$-obraznom volnovode i spektralnye svoistva lestnitsy Dirikhle”, Zh. vychisl. matem. i matem. fiz., 54:8 (2014), 1299–1318 | DOI | Zbl
[23] F. L. Bakharev, S. G. Matveenko, S. A. Nazarov, “Diskretnyi spektr krestoobraznykh volnovodov”, Algebra i analiz, 28:2 (2016), 58–71 ; F. L. Bakharev, S. G. Matveenko, S. A. Nazarov, “The discrete spectrum of cross-shaped waveguides”, St. Petersburg Math. J., 28:2 (2017), 171–180 | MR | Zbl | DOI
[24] F. L. Bakharev, S. A. Nazarov, Criteria for the absence and existence of bounded solutions at the threshold frequency in a junction of quantum waveguides, arXiv: 1705.10481
[25] K. Pankrashkin, “Eigenvalue inequalities and absence of threshold resonances for waveguide junctions”, J. Math. Anal. Appl., 449:1 (2017), 907–925 | DOI | MR | Zbl
[26] D. Grieser, “Spectra of graph neighborhoods and scattering”, Proc. Lond. Math. Soc. (3), 97:3 (2008), 718–752 | DOI | MR | Zbl
[27] S. A. Nazarov, “Spektr pryamougolnykh reshetok kvantovykh volnovodov”, Izv. RAN. Ser. matem., 81:1 (2017), 31–92 | DOI | MR | Zbl
[28] S. Molchanov, B. Vainberg, “Scattering solutions in networks of thin fibers: small diameter asymptotics”, Comm. Math. Phys., 273:2 (2007), 533–559 | DOI | MR | Zbl
[29] S. A. Nazarov, “Diskretnyi spektr kolenchatykh kvantovykh i uprugikh volnovodov”, Zh. vychisl. matem. i matem. fiz., 56:5 (2016), 879–895 | DOI | Zbl
[30] F. L. Bakharev, S. G. Matveenko, S. A. Nazarov, “Examples of plentiful discrete spectra in infinite spatial cruciform quantum waveguides”, Z. Anal. Anwend., 36:3 (2017), 329–341 | DOI | MR | Zbl
[31] O. N. Sapondzhyan, “Izgib svobodno opertoi poligonalnoi plity”, Izv. AN Arm. SSR. Ser. fiz.-mat., estestv. i tekhn. nauk, 5:2 (1952), 29–46 | Zbl
[32] V. G. Mazya, S. A. Nazarov, “O paradokse Sapondzhyana–Babushki v zadachakh teorii tonkikh plastin”, Dokl. AN Arm. SSR, 78:3 (1984), 127–130 | Zbl
[33] S. A. Nazarov, G. Sweers, “A hinged plate equation and iterated Dirichlet Laplace operator on domains with concave corners”, J. Differential Equations, 233:1 (2007), 151–180 | DOI | MR | Zbl