Eigenvalue asymptotics of long Kirchhoff plates with clamped edges
Sbornik. Mathematics, Tome 210 (2019) no. 4, pp. 473-494 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Asymptotic expansions are constructed for the eigenvalues and eigenfunctions of the Dirichlet problem for the biharmonic operator in thin domains (Kirchhoff plates with clamped edges). For a rectangular plate the leading terms are asymptotically determined from the Dirichlet problem for a second-order ordinary differential equation, while for a $\mathsf T$-junction of plates they are determined from another limiting problem in an infinite waveguide formed by three half-strips in the shape of a letter $\mathsf T$ and describing a boundary-layer phenomenon. Open questions are stated for which the method developed gives no answer. Bibliography: 33 titles.
Keywords: Kirchhoff plate, eigenvalues and eigenfunctions, asymptotic behaviour, dimension reduction, boundary layer.
@article{SM_2019_210_4_a0,
     author = {F. L. Bakharev and S. A. Nazarov},
     title = {Eigenvalue asymptotics of long {Kirchhoff} plates with clamped edges},
     journal = {Sbornik. Mathematics},
     pages = {473--494},
     year = {2019},
     volume = {210},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_4_a0/}
}
TY  - JOUR
AU  - F. L. Bakharev
AU  - S. A. Nazarov
TI  - Eigenvalue asymptotics of long Kirchhoff plates with clamped edges
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 473
EP  - 494
VL  - 210
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_4_a0/
LA  - en
ID  - SM_2019_210_4_a0
ER  - 
%0 Journal Article
%A F. L. Bakharev
%A S. A. Nazarov
%T Eigenvalue asymptotics of long Kirchhoff plates with clamped edges
%J Sbornik. Mathematics
%D 2019
%P 473-494
%V 210
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2019_210_4_a0/
%G en
%F SM_2019_210_4_a0
F. L. Bakharev; S. A. Nazarov. Eigenvalue asymptotics of long Kirchhoff plates with clamped edges. Sbornik. Mathematics, Tome 210 (2019) no. 4, pp. 473-494. http://geodesic.mathdoc.fr/item/SM_2019_210_4_a0/

[1] P. G. Ciarlet, Plates and junctions in elastic multi-structures. An asymptotic analysis, Rech. Math. Appl., 14, Masson, Paris; Springer-Verlag, Berlin, 1990, viii+215 pp. | MR | Zbl

[2] J. Sanchez-Hubert, É. Sanchez-Palencia, Coques élastiques minces. Propriétés asymptotiques, Rech. Math. Appl., Masson, Paris, 1997, xix+376 pp. | Zbl

[3] V. Maz'ya, S. Nazarov, B. Plamenevskii, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. 1, 2, Oper. Theory Adv. Appl., 111, 112, Birkhäuser Verlag, Basel, 2000, xxiv+435 pp., xxiv+323 pp. | MR | MR | Zbl

[4] S. A. Nazarov, Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2002, 406 pp.

[5] G. Panasenko, Multi-scale modelling for structures and composites, Springer, Dordrecht, 2005, xiv+398 pp. | DOI | MR | Zbl

[6] O. Post, Spectral analysis on graph-like spaces, Lecture Notes in Math., 2039, Springer, Heidelberg, 2012, xvi+431 pp. | DOI | MR | Zbl

[7] P. Exner, H. Kovar̆ík, Quantum waveguides, Theoret. Math. Phys., 22, Springer, Cham, 2015, xxii+382 pp. | DOI | MR | Zbl

[8] A. Gaudiello, G. Panasenko, A. Piatnitski, “Asymptotic analysis and domain decomposition for a biharmonic problem in a thin multi-structure”, Commun. Contemp. Math., 18:5 (2016), 1550057, 27 pp. | DOI | MR | Zbl

[9] S. A. Nazarov, “Asymptotics of the deflection of a cruciform junction of two narrow Kirchhoff plates”, Comput. Math. Math. Phys., 58:7 (2018), 1150–1171 | DOI | DOI | MR | Zbl

[10] S. A. Nazarov, “The asymptotics of natural oscillations of a long two-dimensional Kirchhoff plate with variable cross-section”, Sb. Math., 209:9 (2018), 1287–1336 | DOI | DOI | MR | Zbl

[11] S. A. Nazarov, “General averaging procedure for selfadjoint elliptic systems in many-dimensional domains, including thin ones”, St. Petersburg Math. J., 7:5 (1996), 681–748 | MR | Zbl

[12] S. A. Nazarov, “The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes”, Russian Math. Surveys, 54:5 (1999), 947–1014 | DOI | DOI | MR | Zbl

[13] I. C. Gohberg, M. G. Krein, Introduction to the theory of linear nonselfadjoint operators in Hilbert space, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, R.I., 1969, xv+378 pp. | MR | MR | Zbl | Zbl

[14] S. A. Nazarov, “Self-adjoint elliptic boundary-value problems. The polynomial property and formally positive operators”, J. Math. Sci. (N. Y.), 92:6 (1998), 4338–4353 | DOI | MR | Zbl

[15] V. A. Kondrat'ev, “Boundary problems for elliptic equations in domains with conical or angular points”, Trans. Moscow Math. Soc., 16, Amer. Math. Soc., Providence, RI, 1967, 227–313 | MR | Zbl

[16] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, De Gruyter Exp. Math., 13, Walter de Gruyter Co., Berlin, 1994, viii+525 pp. | DOI | MR | Zbl

[17] S. G. Mikhlin, Variatsionnye metody v matematicheskoi fizike, 2-e izd., ispr. i dop., Nauka, M., 1970, 512 pp. ; S. G. Mikhlin, Variational methods in mathematical physics, A Pergamon Press Book The Macmillan Co., New York, 1964, xxxii+582 pp. | MR | Zbl | MR | Zbl

[18] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Leningr. un-ta, L., 1980, 264 pp. ; M. Sh. Birman, M. Z. Solomyak, Spectral theory of self-adjoint operators in Hilbert space, Math. Appl. (Soviet Ser.), 5, D. Reidel Publishing Co., Dordrecht, 1987, xv+301 pp. | MR | Zbl | MR

[19] M. L. Williams, “Stress singularities resulting from various boundary conditions in angular corners of plate in extension”, J. Appl. Mech., 19:2 (1952), 526–528 https://authors.library.caltech.edu/47672/

[20] C. De Coster, S. Nicaise, G. Sweers, “Solving the biharmonic Dirichlet problem on domains with corners”, Math. Nach., 288:8-9 (2015), 854–871 | DOI | MR | Zbl

[21] M. I. Vishik, L. A. Lyusternik, “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, UMN, 12:5(77) (1957), 3–122 ; M. I. Višik, L. A. Ljusternik, “Regular degeneration and boundary layer for linear differential equations with small parameter”, Amer. Math. Soc. Transl. (2), 20 (1962), 239–364 | MR | Zbl | DOI | MR | Zbl

[22] S. A. Nazarov, “Ogranichennye resheniya v $\mathrm{T}$-obraznom volnovode i spektralnye svoistva lestnitsy Dirikhle”, Zh. vychisl. matem. i matem. fiz., 54:8 (2014), 1299–1318 | DOI | Zbl

[23] F. L. Bakharev, S. G. Matveenko, S. A. Nazarov, “Diskretnyi spektr krestoobraznykh volnovodov”, Algebra i analiz, 28:2 (2016), 58–71 ; F. L. Bakharev, S. G. Matveenko, S. A. Nazarov, “The discrete spectrum of cross-shaped waveguides”, St. Petersburg Math. J., 28:2 (2017), 171–180 | MR | Zbl | DOI

[24] F. L. Bakharev, S. A. Nazarov, Criteria for the absence and existence of bounded solutions at the threshold frequency in a junction of quantum waveguides, arXiv: 1705.10481

[25] K. Pankrashkin, “Eigenvalue inequalities and absence of threshold resonances for waveguide junctions”, J. Math. Anal. Appl., 449:1 (2017), 907–925 | DOI | MR | Zbl

[26] D. Grieser, “Spectra of graph neighborhoods and scattering”, Proc. Lond. Math. Soc. (3), 97:3 (2008), 718–752 | DOI | MR | Zbl

[27] S. A. Nazarov, “Spektr pryamougolnykh reshetok kvantovykh volnovodov”, Izv. RAN. Ser. matem., 81:1 (2017), 31–92 | DOI | MR | Zbl

[28] S. Molchanov, B. Vainberg, “Scattering solutions in networks of thin fibers: small diameter asymptotics”, Comm. Math. Phys., 273:2 (2007), 533–559 | DOI | MR | Zbl

[29] S. A. Nazarov, “Diskretnyi spektr kolenchatykh kvantovykh i uprugikh volnovodov”, Zh. vychisl. matem. i matem. fiz., 56:5 (2016), 879–895 | DOI | Zbl

[30] F. L. Bakharev, S. G. Matveenko, S. A. Nazarov, “Examples of plentiful discrete spectra in infinite spatial cruciform quantum waveguides”, Z. Anal. Anwend., 36:3 (2017), 329–341 | DOI | MR | Zbl

[31] O. N. Sapondzhyan, “Izgib svobodno opertoi poligonalnoi plity”, Izv. AN Arm. SSR. Ser. fiz.-mat., estestv. i tekhn. nauk, 5:2 (1952), 29–46 | Zbl

[32] V. G. Mazya, S. A. Nazarov, “O paradokse Sapondzhyana–Babushki v zadachakh teorii tonkikh plastin”, Dokl. AN Arm. SSR, 78:3 (1984), 127–130 | Zbl

[33] S. A. Nazarov, G. Sweers, “A hinged plate equation and iterated Dirichlet Laplace operator on domains with concave corners”, J. Differential Equations, 233:1 (2007), 151–180 | DOI | MR | Zbl