Mots-clés : anisotropic elliptic equation, existence of a solution
@article{SM_2019_210_3_a3,
author = {L. M. Kozhevnikova},
title = {Entropy and renormalized solutions of anisotropic elliptic equations with variable nonlinearity exponents},
journal = {Sbornik. Mathematics},
pages = {417--446},
year = {2019},
volume = {210},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2019_210_3_a3/}
}
TY - JOUR AU - L. M. Kozhevnikova TI - Entropy and renormalized solutions of anisotropic elliptic equations with variable nonlinearity exponents JO - Sbornik. Mathematics PY - 2019 SP - 417 EP - 446 VL - 210 IS - 3 UR - http://geodesic.mathdoc.fr/item/SM_2019_210_3_a3/ LA - en ID - SM_2019_210_3_a3 ER -
L. M. Kozhevnikova. Entropy and renormalized solutions of anisotropic elliptic equations with variable nonlinearity exponents. Sbornik. Mathematics, Tome 210 (2019) no. 3, pp. 417-446. http://geodesic.mathdoc.fr/item/SM_2019_210_3_a3/
[1] H. Brezis, “Semilinear equations in $\mathbb R^N$ without condition at infnity”, Appl. Math. Optim., 12 (1984), 271–282 | DOI | MR | Zbl
[2] L. Boccardo, T. Gallouët, J. L. Vazquez, “Nonlinear elliptic equations in $\mathbf R^N$ without growth restrictions on the data”, J. Differential Equations, 105:2 (1993), 334–363 | DOI | MR | Zbl
[3] M. Bendahmane, K. H. Karlsen, “Nonlinear anisotropic elliptic and parabolic equations in $\mathbb{R}^N$ with advection and lower order terms and locally integrable data”, Potential Anal., 22:3 (2005), 207–227 | DOI | MR | Zbl
[4] L. Boccardo, T. Gallouet, “Nonlinear elliptic equations with right hand side measures”, Comm. Partial Differential Equations, 17:3-4 (1992), 641–655 | DOI | MR | Zbl
[5] L. Boccardo, T. Gallouet, P. Marcellini, “Anisotropic equations in $L^1$”, Differential Integral Equations, 9:1 (1996), 209–212 | MR | Zbl
[6] Ph. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, J. L. Vazquez, “An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 22:2 (1995), 241–273 | MR | Zbl
[7] S. N. Kruzhkov, “Kvazilineinye uravneniya pervogo poryadka so mnogimi nezavisimymi peremennymi”, Matem. sb., 81(123):2 (1970), 228–255 | MR | Zbl
[8] R. J. DiPerna, P. L. Lions, “On the Cauchy problem for Boltzmann equations: global existence and weak stability”, Ann. of Math. (2), 130:2 (1989), 321–366 | DOI | MR | Zbl
[9] F. Kh. Mukminov, “Edinstvennost renormalizovannogo resheniya elliptiko-parabolicheskoi zadachi v anizotropnykh prostranstvakh Soboleva–Orlicha”, Matem. sb., 208:8 (2017), 106–125 | DOI | MR | Zbl
[10] A. A. Kovalevskii, “Apriornye svoistva reshenii nelineinykh uravnenii s vyrozhdayuscheisya koertsitivnostyu i $L^1$-dannymi”, Trudy Chetvertoi Mezhdunarodnoi konferentsii po differentsialnym i funktsionalno-differentsialnym uravneniyam, Chast 2 (Moskva, 2005), SMFN, 16, RUDN, M., 2006, 47–67 ; A. A. Kovalevsky, “A priori properties of solutions of nonlinear equations with degenerate coercivity and $L^1$-data”, J. Math. Sci. (N.Y.), 149:5 (2008), 1517–1538 | MR | DOI
[11] A. Alvino, L. Boccardo, V. Ferone, L. Orsina, G. Trombetti, “Existence results for nonlinear elliptic equations with degenerate coercivity”, Ann. Mat. Pura Appl. (4), 182:1 (2003), 53–79 | DOI | MR | Zbl
[12] A. A. Kovalevskii, “O skhodimosti funktsii iz cobolevskogo prostranstva, udovletvoryayuschikh spetsialnym integralnym otsenkam”, Ukr. matem. zhurn., 58:2 (2006), 168–183 | MR | Zbl
[13] M. F. Bidaut-Véron, “Removable singularities and existence for a quasilinear equation with absorption or source term and measure data”, Adv. Nonlinear Stud., 3:1 (2003), 25–63 | DOI | MR | Zbl
[14] A. Benkirane, J. Bennouna, “Existence of entropy solutions for some nonlinear problems in Orlicz spaces”, Abstr. Appl. Anal., 7:2 (2002), 85–102 | DOI | MR | Zbl
[15] L. Aharouch, J. Bennouna, A. Touzani, “Existence of renormalized solution of some elliptic problems in Orlicz spaces”, Rev. Mat. Complut., 22:1 (2009), 91–110 | DOI | MR | Zbl
[16] P. Gwiazda, P. Wittbold, A. Wróblewska, A. Zimmermann, “Renormalized solutions of nonlinear elliptic problems in generalized Orlicz spaces”, J. Differential Equations, 253:2 (2012), 635–666 | DOI | MR | Zbl
[17] L. M. Kozhevnikova, “Ob entropiinom reshenii ellipticheskoi zadachi v anizotropnykh prostranstvakh Soboleva–Orlicha”, Zh. vychisl. matem. i matem. fiz., 57:3 (2017), 429–447 | DOI | Zbl
[18] L. M. Kozhevnikova, “Suschestvovanie entropiinykh reshenii ellipticheskoi zadachi v anizotropnykh prostranstvakh Soboleva–Orlicha”, Differentsialnye uravneniya. Matematicheskaya fizika, Itogi nauki i tekhn. Ser. Sovrem. matem. i ee pril. Temat. obz., 139, VINITI RAN, M., 2017, 15–38 | MR
[19] T. C. Halsey, “Electrorheological fluids”, Science, 258:5083 (1992), 761–766 | DOI
[20] V. V. Zhikov, “O variatsionnykh zadachakh i nelineinykh ellipticheskikh uravneniyakh s nestandartnymi usloviyami rosta”, Problemy matem. analiza, 54, Tamara Rozhkovskaya, Novosibirsk, 2011, 23–112 | MR | Zbl
[21] Yu. A. Alkhutov, “Neravenstvo Kharnaka i gelderovost reshenii nelineinykh ellipticheskikh uravnenii s nestandartnym usloviem rosta”, Differents. uravneniya, 33:12 (1997), 1651–1660 | MR | Zbl
[22] M. Bendahmane, P. Wittbold, “Renormalized solutions for nonlinear elliptic equations with variable exponents and $L^1$ data”, Nonlinear Anal., 70:2 (2009), 567–583 | DOI | MR | Zbl
[23] M. Sanchón, J. M. Urbano, “Entropy solutions for the $p(x)$-Laplace equation”, Trans. Amer. Math. Soc., 361:12 (2009), 6387–6405 | DOI | MR | Zbl
[24] B. K. Bonzi, S. Ouaro, “Entropy solutions for a doubly nonlinear elliptic problem with variable exponent”, J. Math. Anal. Appl., 370:2 (2010), 392–405 | DOI | MR | Zbl
[25] S. Ouaro, “Well-posedness results for anisotropic nonlinear elliptic equations with variable exponent and $L^1$-data”, Cubo, 12:1 (2010), 133–148 | DOI | MR | Zbl
[26] L. M. Kozhevnikova, “Ob entropiinykh resheniyakh anizotropnykh ellipticheskikh uravnenii s peremennymi pokazatelyami nelineinostei v neogranichennykh oblastyakh”, Differentsialnye i funktsionalno-differentsialnye uravneniya, SMFN, 63, no. 3, RUDN, M., 2017, 475–493 | MR
[27] E. Azroul, H. Hjiaj, A. Touzani, “Existence and regularity of entropy solutions for strongly nonlinear $p(x)$-elliptic equations”, Electron. J. Differential Equations, 2013 (2013), 68, 27 pp. | MR | Zbl
[28] M. B. Benboubker, H. Hjiaj, S. Ouaro, “Entropy solutions to nonlinear elliptic anisotropic problem with variable exponent”, J. Appl. Anal. Comput., 4:3 (2014), 245–270 | MR | Zbl
[29] M. B. Benboubker, H. Chrayteh, M. El Moumni, H. Hjiaj, “Entropy and renormalized solutions for nonlinear elliptic problem involving variable exponent and measure data”, Acta Math. Sin. (Engl. Ser.), 31:1 (2015), 151–169 | DOI | MR | Zbl
[30] M. S. B. Elemine Vall, A. Ahmed, A. Touzani, A. Benkirane, “Existence of entropy solutions for nonlinear elliptic equations in Musielak framework with $L^1$ data”, Bol. Soc. Parana. Mat. (3), 36:1 (2018), 125–150 | DOI | MR
[31] L. Diening, P. Harjulehto, P. Hästö, M. Růžička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Math., 2017, Springer, Heidelberg, 2011, x+509 pp. | DOI | MR | Zbl
[32] Xianling Fan, “Anisotropic variable exponent Sobolev spaces and $\overrightarrow{p(x)}$-Laplacian equations”, Complex Var. Elliptic Equ., 56:7-9 (2011), 623–642 | DOI | MR | Zbl
[33] M. B. Benboubker, E. Azroul, A. Barbara, “Quasilinear elliptic problems with nonstandard growth”, Electron. J. Differential Equations, 2011 (2011), 62, 16 pp. | MR | Zbl
[34] A. Sh. Kamaletdinov, L. M. Kozhevnikova, L. Yu. Melnik, “Existence of solutions of anisotropic elliptic equations with variable exponents in unbounded domains”, Lobachevskii J. Math., 39:2 (2018), 224–235 | DOI | MR | Zbl
[35] J. Leray, J.-L. Lions, “Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty–Browder”, Bull. Soc. Math. France, 93 (1965), 97–107 | DOI | MR | Zbl
[36] N. Danford, Dzh. T. Shvarts, Lineinye operatory, v. I, Obschaya teoriya, IL, M., 1962, 895 pp. ; N. Dunford, J. T. Schwartz, Linear operators, v. I, Pure Appl. Math., 7, General theory, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958, xiv+858 pp. | MR | MR | Zbl
[37] L. M. Kozhevnikova, A. Sh. Kamaletdinov, “Suschestvovanie reshenii anizotropnykh ellipticheskikh uravnenii s peremennymi pokazatelyami nelineinostei v neogranichennykh oblastyakh”, Vestn. Volgograd. gos. un-ta. Ser. 1. Matem. Fiz., 2016, no. 5(36), 29–41 | MR