Entropy and renormalized solutions of anisotropic elliptic equations with variable nonlinearity exponents
Sbornik. Mathematics, Tome 210 (2019) no. 3, pp. 417-446

Voir la notice de l'article provenant de la source Math-Net.Ru

The Dirichlet problem is considered in arbitrary domains for a class of second-order anisotropic elliptic equations with variable nonlinearity exponents and right-hand sides in $L_1$. It is proved that an entropy solution exists in anisotropic Sobolev spaces with variable exponent. It is proved that the entropy solution obtained is a renormalized solution of the problem under consideration. Bibliography: 37 titles.
Keywords: entropy solution, renormalized solution, variable exponent, Dirichlet problem.
Mots-clés : anisotropic elliptic equation, existence of a solution
@article{SM_2019_210_3_a3,
     author = {L. M. Kozhevnikova},
     title = {Entropy and renormalized solutions of anisotropic elliptic equations with variable nonlinearity exponents},
     journal = {Sbornik. Mathematics},
     pages = {417--446},
     publisher = {mathdoc},
     volume = {210},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_3_a3/}
}
TY  - JOUR
AU  - L. M. Kozhevnikova
TI  - Entropy and renormalized solutions of anisotropic elliptic equations with variable nonlinearity exponents
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 417
EP  - 446
VL  - 210
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_3_a3/
LA  - en
ID  - SM_2019_210_3_a3
ER  - 
%0 Journal Article
%A L. M. Kozhevnikova
%T Entropy and renormalized solutions of anisotropic elliptic equations with variable nonlinearity exponents
%J Sbornik. Mathematics
%D 2019
%P 417-446
%V 210
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2019_210_3_a3/
%G en
%F SM_2019_210_3_a3
L. M. Kozhevnikova. Entropy and renormalized solutions of anisotropic elliptic equations with variable nonlinearity exponents. Sbornik. Mathematics, Tome 210 (2019) no. 3, pp. 417-446. http://geodesic.mathdoc.fr/item/SM_2019_210_3_a3/