On the measure of inclusion in relatively free algebras with the identity of Lie nilpotency of degree 3 or 4
Sbornik. Mathematics, Tome 210 (2019) no. 2, pp. 234-244 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This work is concerned with the concept of a graded subspace of the polylinear part of a relatively free algebra and with the measure of inclusion of such a subspace. Other asymptotic characteristics are also considered. In the case of relatively free algebras with the identity of Lie nilpotency of degree 3 and 4, the measure of inclusion is computed for many subspaces; in particular, for the centre and the $T$-space generated by the commutator this measure is $1/2$. Bibliography: 17 titles.
Keywords: identity of Lie nilpotency, graded subspace, measure of inclusion, rate of growth.
Mots-clés : Frobenius relations
@article{SM_2019_210_2_a2,
     author = {A. V. Grishin},
     title = {On the measure of inclusion in relatively free algebras with the identity of {Lie} nilpotency of degree~3 or~4},
     journal = {Sbornik. Mathematics},
     pages = {234--244},
     year = {2019},
     volume = {210},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_2_a2/}
}
TY  - JOUR
AU  - A. V. Grishin
TI  - On the measure of inclusion in relatively free algebras with the identity of Lie nilpotency of degree 3 or 4
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 234
EP  - 244
VL  - 210
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_2_a2/
LA  - en
ID  - SM_2019_210_2_a2
ER  - 
%0 Journal Article
%A A. V. Grishin
%T On the measure of inclusion in relatively free algebras with the identity of Lie nilpotency of degree 3 or 4
%J Sbornik. Mathematics
%D 2019
%P 234-244
%V 210
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2019_210_2_a2/
%G en
%F SM_2019_210_2_a2
A. V. Grishin. On the measure of inclusion in relatively free algebras with the identity of Lie nilpotency of degree 3 or 4. Sbornik. Mathematics, Tome 210 (2019) no. 2, pp. 234-244. http://geodesic.mathdoc.fr/item/SM_2019_210_2_a2/

[1] V. N. Latyshev, “K teoreme Regeva o tozhdestvakh tenzornogo proizvedeniya $PI$-algebr”, UMN, 27:4(166) (1972), 213–214 | MR | Zbl

[2] D. Krakowski, A. Regev, “The polynomial identities of the Grassmann algebra”, Trans. Amer. Math. Soc., 181 (1973), 429–438 | DOI | MR | Zbl

[3] I. B. Volichenko, T-ideal, porozhdennyi elementom $[{x}_1,{x}_2,{x}_3,{x}_4]$, Preprint No 22, In-t matem. AN BSSR, Minsk, 1978, 13 pp.

[4] A. V. Grishin, “Asymptotic properties of free finitely generated algebras of certain varieties”, Algebra and Logic, 22:6 (1983), 431–443 | DOI | MR | Zbl

[5] A. V. Grishin, “The growth exponent of a variety of algebras and its applications”, Algebra and Logic, 26:5 (1987), 318–333 | DOI | MR | Zbl

[6] A. Giambruno, S. Mishchenko, M. Zaicev, “Codimensions of algebras and growth functions”, Adv. Math., 217:3 (2008), 1027–1052 | DOI | MR | Zbl

[7] A. V. Grishin, “On the additive structure and asymptotics of codimensions $c_n$ in the algebra $F^{(5)}$”, J. Math. Sci. (N. Y.), 233:5 (2018), 666–674 | DOI | MR | Zbl

[8] A. V. Grishin, “Asymptotics of the codimensions $c_n$ in the algebra $F^{(7)}$”, Math. Notes, 104:1 (2018), 22–28 | DOI | DOI | MR | Zbl

[9] A. V. Grishin, “On the structure of the centre of a relatively free Grassmann algebra”, Russian Math. Surveys, 65:4 (2010), 781–782 | DOI | DOI | MR | Zbl

[10] A. V. Grishin, “On the center of a relatively free Lie-nilpotent algebra of index $4$”, Math. Notes, 91:1 (2012), 139–140 | DOI | DOI | MR | Zbl

[11] A. V. Grishin, S. V. Pchelintsev, “On centres of relatively free associative algebras with a Lie nilpotency identity”, Sb. Math., 206:11 (2015), 1610–1627 | DOI | DOI | MR | Zbl

[12] A. V. Grishin, S. V. Pchelintsev, “Proper central and core polynomials of relatively free associative algebras with identity of Lie nilpotency of degrees 5 and 6”, Sb. Math., 207:12 (2016), 1674–1692 | DOI | DOI | MR | Zbl

[13] A. V. Grishin, L. M. Tsybulya, “On the multiplicative and $T$-space structure of the relatively free Grassmann algebra”, Sb. Math., 200:9 (2009), 1299–1338 | DOI | DOI | MR | Zbl

[14] A. V. Grishin, L. M. Tsybulya, “On the structure of a relatively free Grassmann algebra”, J. Math. Sci. (N. Y.), 171:2 (2010), 149–212 | DOI | MR | Zbl

[15] A. V. Grishin, L. M. Tsybulya, A. A. Shokola, “On $T$-spaces and relations in relatively free, Lie nilpotent, associative algebras”, J. Math. Sci. (N. Y.), 177:6 (2011), 868–877 | DOI | MR | Zbl

[16] A. V. Grishin, “On $T$-spaces in a relatively free two-generated Lie nilpotent associative algebra of index $4$”, J. Math. Sci. (N. Y.), 191:5 (2013), 686–690 | DOI | MR | Zbl

[17] S. V. Okhitin, “Central polynomials of an algebra of second-order matrices”, Moscow Univ. Math. Bull., 43:4 (1988), 49–51 | MR | Zbl