On the measure of inclusion in relatively free algebras with the identity of Lie nilpotency of degree~3 or~4
Sbornik. Mathematics, Tome 210 (2019) no. 2, pp. 234-244

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is concerned with the concept of a graded subspace of the polylinear part of a relatively free algebra and with the measure of inclusion of such a subspace. Other asymptotic characteristics are also considered. In the case of relatively free algebras with the identity of Lie nilpotency of degree 3 and 4, the measure of inclusion is computed for many subspaces; in particular, for the centre and the $T$-space generated by the commutator this measure is $1/2$. Bibliography: 17 titles.
Keywords: identity of Lie nilpotency, graded subspace, measure of inclusion, rate of growth.
Mots-clés : Frobenius relations
@article{SM_2019_210_2_a2,
     author = {A. V. Grishin},
     title = {On the measure of inclusion in relatively free algebras with the identity of {Lie} nilpotency of degree~3 or~4},
     journal = {Sbornik. Mathematics},
     pages = {234--244},
     publisher = {mathdoc},
     volume = {210},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_2_a2/}
}
TY  - JOUR
AU  - A. V. Grishin
TI  - On the measure of inclusion in relatively free algebras with the identity of Lie nilpotency of degree~3 or~4
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 234
EP  - 244
VL  - 210
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_2_a2/
LA  - en
ID  - SM_2019_210_2_a2
ER  - 
%0 Journal Article
%A A. V. Grishin
%T On the measure of inclusion in relatively free algebras with the identity of Lie nilpotency of degree~3 or~4
%J Sbornik. Mathematics
%D 2019
%P 234-244
%V 210
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2019_210_2_a2/
%G en
%F SM_2019_210_2_a2
A. V. Grishin. On the measure of inclusion in relatively free algebras with the identity of Lie nilpotency of degree~3 or~4. Sbornik. Mathematics, Tome 210 (2019) no. 2, pp. 234-244. http://geodesic.mathdoc.fr/item/SM_2019_210_2_a2/