Hadamard's theorem for mappings with relaxed smoothness conditions
Sbornik. Mathematics, Tome 210 (2019) no. 2, pp. 165-183 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper puts forward sufficient conditions for a mapping from $\mathbb R^n$ to $\mathbb R^n$ to be a global homeomorphism. As an application, the Hadamard theorem for differentiable mappings and conditions for the existence and uniqueness of a coincidence point of a covering mapping and a Lipschitz mapping on $\mathbb R^n$ are derived. Covering mappings of metric spaces and mappings covering at a point are studied. Bibliography: 23 titles.
Keywords: local homeomorphism, Hadamard's homeomorphism theorem, Caristi-like condition, covering mapping.
@article{SM_2019_210_2_a0,
     author = {A. V. Arutyunov and S. E. Zhukovskiy},
     title = {Hadamard's theorem for mappings with relaxed smoothness conditions},
     journal = {Sbornik. Mathematics},
     pages = {165--183},
     year = {2019},
     volume = {210},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_2_a0/}
}
TY  - JOUR
AU  - A. V. Arutyunov
AU  - S. E. Zhukovskiy
TI  - Hadamard's theorem for mappings with relaxed smoothness conditions
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 165
EP  - 183
VL  - 210
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_2_a0/
LA  - en
ID  - SM_2019_210_2_a0
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%A S. E. Zhukovskiy
%T Hadamard's theorem for mappings with relaxed smoothness conditions
%J Sbornik. Mathematics
%D 2019
%P 165-183
%V 210
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2019_210_2_a0/
%G en
%F SM_2019_210_2_a0
A. V. Arutyunov; S. E. Zhukovskiy. Hadamard's theorem for mappings with relaxed smoothness conditions. Sbornik. Mathematics, Tome 210 (2019) no. 2, pp. 165-183. http://geodesic.mathdoc.fr/item/SM_2019_210_2_a0/

[1] J. M. Ortega, W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press, New York–London, 1970, xx+572 pp. | DOI | MR | MR | Zbl

[2] F. H. Clarke, Optimization and nonsmooth analysis, Canad. Math. Soc. Ser. Monogr. Adv. Texts, A Wiley-Interscience Publication. John Wiley Sons, Inc., New York, 1983, xiii+308 pp. | MR | MR | Zbl | Zbl

[3] B. H. Pourciau, “Hadamard's theorem for locally Lipschitzian maps”, J. Math. Anal. Appl., 85:1 (1982), 279–285 | DOI | MR | Zbl

[4] A. V. Arutyunov, “Caristi's condition and existence of a minimum of a lower bounded function in a metric space. Applications to the theory of coincidence points”, Proc. Steklov Inst. Math., 291 (2015), 24–37 | DOI | DOI | MR | Zbl

[5] M. A. Khamsi, “Remarks on Caristi's fixed point theorem”, Nonlinear Anal., 71:1-2 (2009), 227–231 | DOI | MR | Zbl

[6] W. Takahashi, “Minimization theorems and fixed point theorems”, Nonlinear analysis and mathematical economics (Kyoto, 1992), Sūrikaisekikenkyūsho Kōkyūroku, 829, RIMS, Kyoto Univ., Kyoto, 1993, 175–191 | MR | Zbl

[7] J. Dugundji, A. Granas, Fixed point theory, v. I, Monogr. Mat., 61, PWN, Warszawa, 1982, 209 pp. | MR | Zbl

[8] H. Brézis, F. E. Browder, “A general principle on ordered sets in nonlinear functional analysis”, Advances in Math., 21:3 (1976), 355–364 | DOI | MR | Zbl

[9] V. V. Voevodin, Yu. A. Kuznetsov, Matritsy i vychisleniya, Nauka, M., 1984, 319 pp. | MR | Zbl

[10] A. V. Arutyunov, “On the existence of solutions for nonlinear equations”, Dokl. Math., 95:1 (2017), 46–49 | DOI | MR | Zbl

[11] A. V. Arutyunov, S. E. Zhukovskiy, “Existence and properties of inverse mappings”, Proc. Steklov Inst. Math., 271 (2010), 12–22 | DOI | MR | Zbl

[12] A. V. Arutyunov, R. B. Vinter, “A simple ‘finite approximations’ proof of the Pontryagin maximum principle under reduced differentiability hypotheses”, Set-Valued Anal., 12:1-2 (2004), 5–24 | DOI | MR | Zbl

[13] J. S. Raimond, “Local inversion for differentiable functions and Darboux property”, Mathematika, 49:1-2 (2002), 141–158 | DOI | MR | Zbl

[14] A. V. Arutyunov, G. G. Magaril-Ilyaev, V. M. Tikhomirov, Printsip maksimuma Pontryagina. Dokazatelstvo i prilozheniya, Faktorial Press, M., 2006, 144 pp.

[15] J. Warga, “Fat homeomorphisms and unbounded derivate containers”, J. Math. Anal. Appl., 81:2 (1981), 545–560 | DOI | MR | Zbl

[16] B. Sh. Mordukhovich, Metody approksimatsii v zadachakh optimizatsii i upravleniya, Nauka, M., 1988, 360 pp. | MR | Zbl

[17] A. Arutyunov, E. Avakov, B. Gel'man, A. Dmitruk, V. Obukhovskii, “Locally covering maps in metric spaces and coincidence points”, J. Fixed Point Theory Appl., 5:1 (2009), 105–127 | DOI | MR | Zbl

[18] A. V. Arutyunov, “Second-order conditions in extremal problems. The abnormal points”, Trans. Amer. Math. Soc., 350:11 (1998), 4341–4365 | DOI | MR | Zbl

[19] A. V. Dmitruk, “On a nonlocal metric regularity of nonlinear operators”, Control Cybernet., 34:3 (2005), 723–746 | MR | Zbl

[20] A. V. Arutyunov, B. D. Gel'man, “On the structure of the set of coincidence points”, Sb. Math., 206:3 (2015), 370–388 | DOI | DOI | MR | Zbl

[21] F. E. Browder, “On the convergence of successive approximations for nonlinear functional equations”, Nederl. Akad. Wetensch. Proc. Ser. A, 71, = Indag. Math., 30 (1968), 27–35 | DOI | MR | Zbl

[22] J. Jachymski, “Around Browder's fixed point theorem for contractions”, J. Fixed Point Theory Appl., 5:1 (2009), 47–61 | DOI | MR | Zbl

[23] D. Burago, Yu. Burago, S. Ivanov, A course in metric geometry, Grad. Stud. Math., 33, Amer. Math. Soc., Providence, RI, 2001, xiv+415 pp. | DOI | MR | Zbl