Hadamard's theorem for mappings with relaxed smoothness conditions
Sbornik. Mathematics, Tome 210 (2019) no. 2, pp. 165-183

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper puts forward sufficient conditions for a mapping from $\mathbb R^n$ to $\mathbb R^n$ to be a global homeomorphism. As an application, the Hadamard theorem for differentiable mappings and conditions for the existence and uniqueness of a coincidence point of a covering mapping and a Lipschitz mapping on $\mathbb R^n$ are derived. Covering mappings of metric spaces and mappings covering at a point are studied. Bibliography: 23 titles.
Keywords: local homeomorphism, Hadamard's homeomorphism theorem, Caristi-like condition, covering mapping.
@article{SM_2019_210_2_a0,
     author = {A. V. Arutyunov and S. E. Zhukovskiy},
     title = {Hadamard's theorem for mappings with relaxed smoothness conditions},
     journal = {Sbornik. Mathematics},
     pages = {165--183},
     publisher = {mathdoc},
     volume = {210},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_2_a0/}
}
TY  - JOUR
AU  - A. V. Arutyunov
AU  - S. E. Zhukovskiy
TI  - Hadamard's theorem for mappings with relaxed smoothness conditions
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 165
EP  - 183
VL  - 210
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_2_a0/
LA  - en
ID  - SM_2019_210_2_a0
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%A S. E. Zhukovskiy
%T Hadamard's theorem for mappings with relaxed smoothness conditions
%J Sbornik. Mathematics
%D 2019
%P 165-183
%V 210
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2019_210_2_a0/
%G en
%F SM_2019_210_2_a0
A. V. Arutyunov; S. E. Zhukovskiy. Hadamard's theorem for mappings with relaxed smoothness conditions. Sbornik. Mathematics, Tome 210 (2019) no. 2, pp. 165-183. http://geodesic.mathdoc.fr/item/SM_2019_210_2_a0/