Interpolation and absolutely convergent series in Fréchet spaces
Sbornik. Mathematics, Tome 210 (2019) no. 1, pp. 105-144 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A theorem due to Eidelheit concerning the interpolation problem for a sequence of continuous linear functionals in a Fréchet space is generalized. A solvability criterion for the interpolation problem is obtained in the form of an absolutely convergent series whose elements are in a fixed set. A solution of the system of equations for a sequence of functionals is constructed explicitly in a particular case. These results are then applied to spaces of holomorphic functions. Bibliography: 15 titles.
Keywords: absolutely convergent series, continuous linear functionals, spaces of holomorphic functions, series of exponentials.
Mots-clés : Fréchet space, interpolation
@article{SM_2019_210_1_a3,
     author = {S. G. Merzlyakov},
     title = {Interpolation and absolutely convergent series in {Fr\'echet} spaces},
     journal = {Sbornik. Mathematics},
     pages = {105--144},
     year = {2019},
     volume = {210},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_1_a3/}
}
TY  - JOUR
AU  - S. G. Merzlyakov
TI  - Interpolation and absolutely convergent series in Fréchet spaces
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 105
EP  - 144
VL  - 210
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_1_a3/
LA  - en
ID  - SM_2019_210_1_a3
ER  - 
%0 Journal Article
%A S. G. Merzlyakov
%T Interpolation and absolutely convergent series in Fréchet spaces
%J Sbornik. Mathematics
%D 2019
%P 105-144
%V 210
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2019_210_1_a3/
%G en
%F SM_2019_210_1_a3
S. G. Merzlyakov. Interpolation and absolutely convergent series in Fréchet spaces. Sbornik. Mathematics, Tome 210 (2019) no. 1, pp. 105-144. http://geodesic.mathdoc.fr/item/SM_2019_210_1_a3/

[1] M. Eidelheit, “Zur Theorie der Systeme linearer Gleichungen”, Studia Math., 6 (1936), 139–148 | DOI | Zbl

[2] S. A. Shkarin, “Moments problem in Frechet spaces”, Math. Notes, 54:1 (1993), 739–746 | DOI | MR | Zbl

[3] R. Meise, D. Vogt, Introduction to functional analysis, Transl. from the German, Oxf. Grad. Texts Math., 2, Clarendon Press, Oxford Univ. Press, New York, 1997, x+437 pp. | MR | Zbl

[4] R. T. Rockafellar, Convex analysis, Princeton Math. Ser., 28, Princeton Univ. Press, Princeton, NJ, 1970, xviii+451 pp. | MR | Zbl | Zbl

[5] A. N. Kolmogorov, S. V. Fomin, Introductory real analysis, Rev. ed., Prentice-Hall, Inc., Englewood Cliffs, NY, 1970, xii+403 pp. | MR | MR | Zbl | Zbl

[6] C. Bessaga, A. Pelczyński, “On a class of $B_0$-spaces”, Bull. Acad. Polon. Sci. Cl. III, 5 (1957), 375–377 | MR | Zbl

[7] E. Michael, “Continuous selections. I”, Ann. of Math. (2), 63:2 (1956), 361–382 | DOI | MR | Zbl

[8] L. Hörmander, An introduction to complex analysis in several variables, D. Van Nostrand Co., Inc., Princeton, NJ–Toronto, ON–London, 1966, x+208 pp. | MR | MR | Zbl | Zbl

[9] J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, Amer. Math. Soc. Colloq. Publ., XX, 3rd ed., Amer. Math. Soc., Providence, RI, 1960, x+398 pp. | MR | MR | Zbl | Zbl

[10] J. L. Kelley, General topology, D. Van Nostrand Company, Inc., Toronto–New York–London, 1955, xiv+298 pp. | MR | MR | Zbl | Zbl

[11] J. Dieudonné, Foundations of modern analysis, Pure Appl. Math., 10, Academic Press, New York–London, 1960, xiv+361 pp. | MR | Zbl | Zbl

[12] S. G. Merzlyakov, S. V. Popenov, “Interpolation with multiplicity by series of exponentials in $H(\mathbb C)$ with nodes on the real axis”, Ufa Math. J., 5:3 (2013), 127–140 | DOI | MR

[13] S. G. Merzlyakov, S. V. Popenov, “Interpolation by series of exponentials in $H(D)$ with real nodes”, Ufa Math. J., 7:1 (2015), 46–57 | DOI | MR

[14] A. F. Leontev, Ryady eksponent, Nauka, M., 1976, 536 pp. | MR | Zbl

[15] A. F. Leontev, Posledovatelnosti polinomov iz eksponent, Nauka, M., 1980, 384 pp. | MR | Zbl