The action of the Monge-Amp\`ere operator on polynomials in the plane and its fixed points of polynomial type
Sbornik. Mathematics, Tome 210 (2019) no. 12, pp. 1663-1689

Voir la notice de l'article provenant de la source Math-Net.Ru

The action of the Monge-Ampère operator on polynomials of degree four in two variables is investigated. Two necessary conditions for the Monge-Ampère equation to have a solution are established. Sufficient conditions for solvability are indicated, which coincide with necessary conditions in certain cases. Invariant submanifolds of the action of the Monge-Ampère operator are found. Closed invariant chains of polynomials are constructed, and all the fixed points having the form of general polynomials of degree four are found. Bibliography: 9 titles.
Keywords: cone, conic, necessary condition, solvability of equations, fixed point.
Mots-clés : invariant set
@article{SM_2019_210_12_a0,
     author = {Yu. A. Aminov},
     title = {The action of the {Monge-Amp\`ere} operator on polynomials in the plane and its fixed points of polynomial type},
     journal = {Sbornik. Mathematics},
     pages = {1663--1689},
     publisher = {mathdoc},
     volume = {210},
     number = {12},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_12_a0/}
}
TY  - JOUR
AU  - Yu. A. Aminov
TI  - The action of the Monge-Amp\`ere operator on polynomials in the plane and its fixed points of polynomial type
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 1663
EP  - 1689
VL  - 210
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_12_a0/
LA  - en
ID  - SM_2019_210_12_a0
ER  - 
%0 Journal Article
%A Yu. A. Aminov
%T The action of the Monge-Amp\`ere operator on polynomials in the plane and its fixed points of polynomial type
%J Sbornik. Mathematics
%D 2019
%P 1663-1689
%V 210
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2019_210_12_a0/
%G en
%F SM_2019_210_12_a0
Yu. A. Aminov. The action of the Monge-Amp\`ere operator on polynomials in the plane and its fixed points of polynomial type. Sbornik. Mathematics, Tome 210 (2019) no. 12, pp. 1663-1689. http://geodesic.mathdoc.fr/item/SM_2019_210_12_a0/