The action of the Monge-Ampère operator on polynomials in the plane and its fixed points of polynomial type
Sbornik. Mathematics, Tome 210 (2019) no. 12, pp. 1663-1689 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The action of the Monge-Ampère operator on polynomials of degree four in two variables is investigated. Two necessary conditions for the Monge-Ampère equation to have a solution are established. Sufficient conditions for solvability are indicated, which coincide with necessary conditions in certain cases. Invariant submanifolds of the action of the Monge-Ampère operator are found. Closed invariant chains of polynomials are constructed, and all the fixed points having the form of general polynomials of degree four are found. Bibliography: 9 titles.
Keywords: cone, conic, necessary condition, solvability of equations, fixed point.
Mots-clés : invariant set
@article{SM_2019_210_12_a0,
     author = {Yu. A. Aminov},
     title = {The action of the {Monge-Amp\`ere} operator on polynomials in the plane and its fixed points of polynomial type},
     journal = {Sbornik. Mathematics},
     pages = {1663--1689},
     year = {2019},
     volume = {210},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_12_a0/}
}
TY  - JOUR
AU  - Yu. A. Aminov
TI  - The action of the Monge-Ampère operator on polynomials in the plane and its fixed points of polynomial type
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 1663
EP  - 1689
VL  - 210
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_12_a0/
LA  - en
ID  - SM_2019_210_12_a0
ER  - 
%0 Journal Article
%A Yu. A. Aminov
%T The action of the Monge-Ampère operator on polynomials in the plane and its fixed points of polynomial type
%J Sbornik. Mathematics
%D 2019
%P 1663-1689
%V 210
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2019_210_12_a0/
%G en
%F SM_2019_210_12_a0
Yu. A. Aminov. The action of the Monge-Ampère operator on polynomials in the plane and its fixed points of polynomial type. Sbornik. Mathematics, Tome 210 (2019) no. 12, pp. 1663-1689. http://geodesic.mathdoc.fr/item/SM_2019_210_12_a0/

[1] K. Jörgens, “Über die Lösungen der Differentialgleichung $rt-s^2=1$”, Math. Ann., 127:1 (1954), 130–134 | DOI | MR | Zbl

[2] E. Calabi, “Improper affine hyperspheres of convex type and a generelization of a theorem by K. Jörgens”, Michigan Math. J., 5:2 (1958), 105–126 | DOI | MR | Zbl

[3] A. V. Pogorelov, “On the improper convex affine hyperspheres”, Geometriae Dedicata, 1:1 (1972), 33–46 | DOI | MR | Zbl

[4] Yu. A. Aminov, “Polynomial solutions of the Monge–Ampère equation”, Sb. Math., 205:11 (2014), 1529–1563 | DOI | DOI | MR | Zbl

[5] Yu. Aminov, K. Arslan, B. Bayram, B. Bulca, C. Murathan, G. Öztürk, “On the solution of the Monge–Ampère equation $Z_{xx}Z_{yy}-Z_{xy}^2=f(x,y)$ with quadratic right side”, Zhurn. matem. fiz., anal., geom., 7:3 (2011), 203–211 | MR | Zbl

[6] I. Kh. Sabitov, “Globalnye resheniya trivialnogo uravneniya Monzha–Ampera s izolirovannymi osobennostyami”, Tezisy dokladov mezhdunarodnoi konferentsii “Geometriya v Odesse – 2015”, Odessa, 2015, 86

[7] I. Kh. Sabitov, “Reshenie trivialnogo uravneniya Monzha–Ampera s izolirovannymi osobymi tochkami”, Sib. elektron. matem. izv., 13 (2016), 740–743 | DOI | MR | Zbl

[8] J. A. Gálvez, B. Nelli, “Entire solutions of the degenerate Monge–Ampère equation with a finite number of singularities”, J. Differential Equations, 261:11 (2016), 6614–6631 | DOI | MR | Zbl

[9] V. I. Fuschich, V. M. Shtelen, N. I. Serov, Simmetriinyi analiz i tochnye resheniya nelineinykh uravnenii matematicheskoi fiziki, Naukova dumka, Kiev, 1989, 336 pp. | MR | Zbl