Free products of groups are strongly verbally closed
Sbornik. Mathematics, Tome 210 (2019) no. 10, pp. 1456-1492 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In a number of recent papers it was established that many almost free groups, fundamental groups of almost all connected surfaces, and all groups that are nontrivial free products of groups with identities are algebraically closed in any group in which they are verbally closed. In the present paper we establish that any group that is a nontrivial free product of groups is algebraically closed in any group in which it is verbally closed. Bibliography: 13 titles.
Keywords: verbally closed subgroups, algebraically closed subgroups, retracts of groups.
@article{SM_2019_210_10_a5,
     author = {A. M. Mazhuga},
     title = {Free products of groups are strongly verbally closed},
     journal = {Sbornik. Mathematics},
     pages = {1456--1492},
     year = {2019},
     volume = {210},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_10_a5/}
}
TY  - JOUR
AU  - A. M. Mazhuga
TI  - Free products of groups are strongly verbally closed
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 1456
EP  - 1492
VL  - 210
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_10_a5/
LA  - en
ID  - SM_2019_210_10_a5
ER  - 
%0 Journal Article
%A A. M. Mazhuga
%T Free products of groups are strongly verbally closed
%J Sbornik. Mathematics
%D 2019
%P 1456-1492
%V 210
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2019_210_10_a5/
%G en
%F SM_2019_210_10_a5
A. M. Mazhuga. Free products of groups are strongly verbally closed. Sbornik. Mathematics, Tome 210 (2019) no. 10, pp. 1456-1492. http://geodesic.mathdoc.fr/item/SM_2019_210_10_a5/

[1] A. G. Myasnikov, V. Roman'kov, “Verbally closed subgroups of free groups”, J. Group Theory, 17:1 (2014), 29–40 | DOI | MR | Zbl

[2] V. Roman'kov, “Equations over groups”, Groups Complex. Cryptol., 4:2 (2012), 191–239 | DOI | MR | Zbl

[3] V. A. Roman'kov, N. G. Khisamiev, “Verbally and existentially closed subgroups of free nilpotent groups”, Algebra and Logic, 52:4 (2013), 336–351 | DOI | MR | Zbl

[4] Ant. A. Klyachko, A. M. Mazhuga, “Verbally closed virtually free subgroups”, Sb. Math., 209:6 (2018), 850–856 | DOI | DOI | MR | Zbl

[5] A. M. Mazhuga, “On free decompositions of verbally closed subgroups in free products of finite groups”, J. Group Theory, 20:5 (2017), 971–986 | DOI | MR | Zbl

[6] A. M. Mazhuga, “Strongly verbally closed groups”, J. Algebra, 493:1 (2018), 171–184 ; arXiv: 1707.02464 | DOI | MR | Zbl

[7] A. A. Klyachko, A. M. Mazhuga, V. Y. Miroshnichenko, “Virtually free finite-normal-subgroup-free groups are strongly verbally closed”, J. Algebra, 510 (2018), 319–330 ; arXiv: 1712.03406 | DOI | MR | Zbl

[8] Zh.-P. Serr, “Derevya, amalgamy i ${SL}_2$”, Matematika, 18:1 (1974), 3–51 ; 18:2, 3–27 ; J.-P. Serre, Arbres, amalgames, $\mathrm{SL}_2$, Rédigé avec la collaboration de H. Bass, Astérisque, 46, Soc. Math. France, Paris, 1977, 189 pp. ; J.-P. Serre, Trees, Springer-Verlag, Berlin–New York, 1980, ix+142 с. | Zbl | Zbl | MR | Zbl | MR | Zbl

[9] P. de la Harpe, Topics in geometric group theory, Chicago Lectures in Math., Univ. of Chicago Press, Chicago, IL, 2000, vi+310 pp. | MR | Zbl

[10] N. J. Fine, H. S. Wilf, “Uniqueness theorems for periodic functions”, Proc. Amer. Math. Soc., 16 (1965), 109–114 | DOI | MR | Zbl

[11] A. G. Kurosh, Teoriya grupp, 3-e izd., Nauka, M., 1967, 648 pp. ; A. G. Kurosch, Gruppentheorie, v. I, Math. Lehrbucher und Monogr., III/I, 2., überarb. und erw. Aufl., Akademie-Verlag, Berlin, 1970, xxii+360 pp. ; v. II, Math. Lehrbucher und Monogr., III/II, 1972, xiv+358 pp. | MR | Zbl | MR | Zbl | MR | Zbl

[12] I. A. Grushko, “O bazisakh svobodnogo proizvedeniya grupp”, Matem. sb., 8(50):1 (1940), 169–182 | MR | Zbl

[13] S. V. Ivanov, “On certain elements of free groups”, J. Algebra, 204:2 (1998), 394–405 | DOI | MR | Zbl