Lifting of parallelohedra
Sbornik. Mathematics, Tome 210 (2019) no. 10, pp. 1434-1455

Voir la notice de l'article provenant de la source Math-Net.Ru

A parallelohedron is a polyhedron that can tessellate the space via translations without gaps and overlaps. Voronoi conjectured that any parallelohedron is affinely equivalent to a Dirichlet-Voronoi cell of some lattice. Delaunay used the term displacement parallelohedron in his paper “Sur la tiling régulière de l'espace à 4 dimensions. Première partie”, where the four-dimensional parallelohedra are listed. In our work, such a parallelohedron is called a lifted parallelohedron, since it is obtained as an extension of a parallelohedron to a parallelohedron of dimension larger by one. It is shown that the operation of lifting yields precisely parallelohedra whose Minkowski sum with some nontrivial segment is again a parallelohedron. It is proved that Voronoi's conjecture holds for parallelohedra admitting lifts and lifted in general position. Bibliography: 20 titles.
Keywords: parallelohedral tiling, lattice, free direction, generatrissa, lamina.
@article{SM_2019_210_10_a4,
     author = {V. P. Grishukhin and V. I. Danilov},
     title = {Lifting of parallelohedra},
     journal = {Sbornik. Mathematics},
     pages = {1434--1455},
     publisher = {mathdoc},
     volume = {210},
     number = {10},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_10_a4/}
}
TY  - JOUR
AU  - V. P. Grishukhin
AU  - V. I. Danilov
TI  - Lifting of parallelohedra
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 1434
EP  - 1455
VL  - 210
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_10_a4/
LA  - en
ID  - SM_2019_210_10_a4
ER  - 
%0 Journal Article
%A V. P. Grishukhin
%A V. I. Danilov
%T Lifting of parallelohedra
%J Sbornik. Mathematics
%D 2019
%P 1434-1455
%V 210
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2019_210_10_a4/
%G en
%F SM_2019_210_10_a4
V. P. Grishukhin; V. I. Danilov. Lifting of parallelohedra. Sbornik. Mathematics, Tome 210 (2019) no. 10, pp. 1434-1455. http://geodesic.mathdoc.fr/item/SM_2019_210_10_a4/