@article{SM_2019_210_10_a3,
author = {P. S. Gevorgyan and R. Jimenez},
title = {On equivariant fibrations of $G${-CW-complexes}},
journal = {Sbornik. Mathematics},
pages = {1428--1433},
year = {2019},
volume = {210},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2019_210_10_a3/}
}
P. S. Gevorgyan; R. Jimenez. On equivariant fibrations of $G$-CW-complexes. Sbornik. Mathematics, Tome 210 (2019) no. 10, pp. 1428-1433. http://geodesic.mathdoc.fr/item/SM_2019_210_10_a3/
[1] M. Steinberger, J. West, “Covering homotopy properties of maps between C.W. complexes or ANR's”, Proc. Amer. Math. Soc., 92:4 (1984), 573–577 | DOI | MR | Zbl
[2] R. Cauty, “Sur les ouverts des CW-complexes et les fibrés de Serre”, Colloq. Math., 63:1 (1992), 1–7 | DOI | MR | Zbl
[3] J. P. May, J. Sigurdsson, Parametrized homotopy theory, Math. Surveys Monogr., 132, Amer. Math. Soc., Providence, RI, 2006, x+441 pp. | DOI | MR | Zbl
[4] I. M. James, G. B. Segal, “On equivariant homotopy type”, Topology, 17:3 (1978), 267–272 | DOI | MR | Zbl
[5] G. E. Bredon, Equivariant cohomology theories, Lecture Notes in Math., 34, Springer-Verlag, Berlin–New York, 1967, vi+64 pp. (not consecutively paged) | DOI | MR | Zbl
[6] S. Illman, “The equivariant triangulation theorem for actions of compact Lie groups”, Math. Ann., 262:4 (1983), 487–501 | DOI | MR | Zbl
[7] R. Cauty, “Sur les sous-espaces des complexes simpliciaux”, Bull. Soc. Math. France, 100 (1972), 129–155 | DOI | MR | Zbl
[8] T. tom Dieck, Transformation groups, De Gruyter Stud. Math., 8, Walter de Gruyter Co., Berlin, 1987, x+312 pp. | DOI | MR | Zbl
[9] W. Lück, Transformation groups and algebraic $K$-theory, Lecture Notes in Math., 1408, Springer-Verlag, Berlin, 1989, xii+443 pp. | DOI | MR | Zbl