@article{SM_2019_210_10_a0,
author = {R. R. Akopyan},
title = {An analogue of the two-constants theorem and optimal recovery of analytic functions},
journal = {Sbornik. Mathematics},
pages = {1348--1360},
year = {2019},
volume = {210},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2019_210_10_a0/}
}
R. R. Akopyan. An analogue of the two-constants theorem and optimal recovery of analytic functions. Sbornik. Mathematics, Tome 210 (2019) no. 10, pp. 1348-1360. http://geodesic.mathdoc.fr/item/SM_2019_210_10_a0/
[1] V. Smirnov (V. Smirnoff), “Sur les formules de Cauchy et de Green et quelques problèmes qui s'y rattachent”, Izvestiya Akademii nauk SSSR. VII seriya. Otdelenie matematicheskikh i estestvennykh nauk, 1932, no. 3, 337–372 | Zbl
[2] S. Ya. Khavinson, “Analiticheskie funktsii ogranichennogo vida (granichnye i ekstremalnye svoistva)”, Itogi nauki. Matem. anal. 1963, VINITI, M., 1965, 5–80 | MR | Zbl
[3] G. Ts. Tumarkin, S. Ya. Khavinson, “O suschestvovanii v mnogosvyaznykh oblastyakh odnoznachnykh analiticheskikh funktsii s zadannym modulem granichnykh znachenii”, Izv. AN SSSR. Ser. matem., 22:4 (1958), 543–562 | MR | Zbl
[4] I. I. Priwalow, Randeigenschaften analytischer Funktionen, Hochschulbücher für Mathematik, 25, 2. Aufl., VEB Deutscher Verlag der Wissenschaften, Berlin, 1956, viii+247 pp. | MR | MR | Zbl | Zbl
[5] G. Ts. Tumarkin, S. Ya. Khavinson, “Klassy analiticheskikh funktsii v mnogosvyaznykh oblastyakh, predstavimye po formulam Koshi i Grina”, UMN, 13:2(80) (1958), 215–221 | MR | Zbl
[6] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Gostekhizdat, M.–L., 1952, 540 pp. ; 2-е изд., Наука, М., 1966, 628 с. ; G. M. Goluzin, Geometric theory of functions of a complex variable, Transl. Math. Monogr., 26, Amer. Math. Soc., Providence, RI, 1969, vi+676 с. | MR | Zbl | MR | Zbl | MR | Zbl
[7] F. Nevanlinna, R. Nevanlinna, “Über die Eigenschaften analytischer Funktionen in der Umgebung einer singulären Stelle oder Linie”, Acta Soc. Sc. Fennicae, 50 (1922), 5, 46 pp. | Zbl
[8] S. Ya. Khavinson, “Extremal problems for bounded analytic functions with interior side conditions”, Russian Math. Surveys, 18:2 (1963), 23–96 | DOI | MR | Zbl
[9] S. Ya. Khavinson, T. S. Kuzina, “The structural formulae for extremal functions in Hardy classes on finite Riemann surfaces”, Selected topics in complex analysis, Oper. Theory Adv. Appl., 158, Birkhäuser, Basel, 2005, 37–57 | DOI | MR | Zbl
[10] V. V. Arestov, “Uniform regularization of the problem of calculating the values of an operator”, Math. Notes, 22:2 (1977), 618–626 | DOI | MR | Zbl
[11] V. V. Arestov, “Optimal recovery of operators and related problems”, Proc. Steklov Inst. Math., 189:4 (1990), 1–20 | MR | Zbl
[12] V. V. Arestov, V. N. Gabushin, “Best approximation of unbounded operators by bounded ones”, Russian Math. (Iz. VUZ), 39:11 (1995), 38–63 | MR | Zbl
[13] V. V. Arestov, “Approximation of unbounded operators by bounded operators and related extremal problems”, Russian Math. Surveys, 51:6 (1996), 1093–1126 | DOI | DOI | MR | Zbl
[14] G. G. Magaril-Il'yaev, K. Yu. Osipenko, “Optimal recovery of functionals based on inaccurate data”, Math. Notes, 50:6 (1991), 1274–1279 | DOI | MR | Zbl
[15] C. A. Micchelli, T. J. Rivlin, “A survey of optimal recovery”, Optimal estimation in approximation theory, Proc. Internat. Sympos. (Freudenstadt, 1976), Plenum, New York, 1977, 1–54 | MR | Zbl
[16] K. Yu. Osipenko, “Optimal recovery of linear operators in non-Euclidean metrics”, Sb. Math., 205:10 (2014), 1442–1472 | DOI | DOI | MR | Zbl
[17] K. Yu. Osipenko, Optimal recovery of analytic functions, Nova Science Publ., Inc., New York, 2000, 220 pp.
[18] K. Y. Osipenko, M. I. Stessin, “Hadamard and Schwarz type theorems and optimal recovery in spaces of analytic functions”, Constr. Approx., 31:1 (2010), 37–67 | DOI | MR | Zbl
[19] P. Gonzalez-Vera, M. I. Stessin, “Joint spectra of Toeplitz operators and optimal recovery of analytic functions”, Constr. Approx., 36:1 (2012), 53–82 | DOI | MR | Zbl
[20] A. DeGraw, “Optimal recovery of holomorphic functions from inaccurate information about radial integration”, Amer. J. Comput. Math., 2:4 (2012), 258–268 | DOI
[21] G. M. Goluzin, V. I. Krylov, “Obobschennaya formula Carleman'a i prilozhenie ee k analiticheskomu prodolzheniyu funktsii”, Matem. sb., 40:2 (1933), 144–149 | Zbl
[22] L. Aizenberg, Carleman's formulas in complex analysis. Theory and applications, Math. Appl., 244, Kluwer Acad. Publ., Dordrecht, 1993, xx+299 pp. | DOI | MR | MR | Zbl | Zbl
[23] M. M. Lavrent'ev, V. G. Romanov, S. P. Shishatskii, Ill-posed problems of mathematical physics and analysis, Transl. Math. Monogr., 64, Amer. Math. Soc., Providence, RI, 1986, vi+290 pp. | MR | MR | Zbl | Zbl
[24] V. P. Khavin, V. A. Bart, “Szegö–Kolmogorov–Krein theorems on weighted trigonometric approximation and Carleman-type relations”, Ukrainian Math. J., 46:1-2 (1994), 101–132 | DOI | MR | Zbl
[25] L. Baratchart, J. Leblond, F. Seyfert, “Constrained extremal problems in $H^2$ and Carleman's formulae”, Sb. Math., 209:7 (2018), 922–957 | DOI | DOI | MR | Zbl
[26] S. B. Stechkin, “Best approximation of linear operators”, Math. Notes, 1:2 (1967), 91–99 | DOI | MR | Zbl
[27] V. Arestov, M. Filatova, “Best approximation of the differentiation operator in the space $L_2$ on the semiaxis”, J. Approx. Theory, 187:1 (2014), 65–81 | DOI | MR | Zbl
[28] S. A. Smolyak, Ob optimalnom vosstanovlenii funktsii i funktsionalov ot nikh, Diss. ... kand. fiz.-matem. nauk, MGU, M., 1965
[29] N. S. Bakhvalov, “On the optimality of linear methods for operator approximation in convex classes of functions”, U.S.S.R. Comput. Math. Math. Phys., 11:4 (1971), 244–249 | DOI | MR | Zbl
[30] V. N. Gabushin, “Best approximations of functionals on certain sets”, Math. Notes, 8:5 (1970), 780–785 | DOI | MR | Zbl
[31] A. G. Marchuk, Optimalnye po tochnosti metody resheniya lineinykh zadach vosstanovleniya, Preprint No 10, VTs SO AN SSSR, Novosibirsk, 1976, 29 pp.
[32] A. G. Marchuk, K. Yu. Osipenko, “Best approximation of functions specified with an error at a finite number of points”, Math. Notes, 17:3 (1975), 207–212 | DOI | MR | Zbl
[33] R. R. Akopyan, “Optimal recovery of analytic functions from boundary conditions specified with error”, Math. Notes, 99:2 (2016), 177–182 | DOI | DOI | MR | Zbl
[34] R. R. Akopyan, “Optimal recovery of a function analytic in a disk from its approximately given values on a part of the boundary”, Proc. Steklov Inst. Math. (Suppl.), 300, suppl. 1 (2018), 25–37 | DOI | DOI | MR | Zbl
[35] B. Simon, Szegő's theorem and its descendants. Spectral theory for $L^2$ perturbations of orthogonal polynomials, M. B. Porter Lectures, Princeton Univ. Press, Princeton, NJ, 2011, xii+650 pp. | MR | Zbl