An analogue of the two-constants theorem and optimal recovery of analytic functions
Sbornik. Mathematics, Tome 210 (2019) no. 10, pp. 1348-1360

Voir la notice de l'article provenant de la source Math-Net.Ru

Several related extremal problems for analytic functions in a simply connected domain $G$ with rectifiable Jordan boundary $\Gamma$ are treated. The sharp inequality $$ |f(z)|\le\mathscr C^{r,q}(z;\gamma_0,\varphi_0;\gamma_1,\varphi_1)\|f\|^\alpha_{L^q_{\varphi_1}(\gamma_1)}\|f\|^{1-\alpha}_{L^r_{\varphi_0}(\gamma_0)} $$ is established between a value of an analytic function in the domain and the weighted integral norms of the restrictions of its boundary values to two measurable subsets $\gamma_1$ and $\gamma_0=\Gamma\setminus\gamma_1$ of the boundary of the domain. It is an analogue of the F. and R. Nevanlinna two-constants theorem. The corresponding problems of optimal recovery of a function from its approximate boundary values on $\gamma_1$ and of the best approximation to the functional of analytic extension of a function from the part of the boundary $\gamma_1$ into the domain are solved. Bibliography: 35 titles.
Keywords: analytic functions, F. and R. Nevanlinna two-constants theorem, optimal recovery of a functional, best approximation of an unbounded functional by bounded functionals, harmonic measure.
@article{SM_2019_210_10_a0,
     author = {R. R. Akopyan},
     title = {An analogue of the two-constants theorem and optimal recovery of analytic functions},
     journal = {Sbornik. Mathematics},
     pages = {1348--1360},
     publisher = {mathdoc},
     volume = {210},
     number = {10},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_10_a0/}
}
TY  - JOUR
AU  - R. R. Akopyan
TI  - An analogue of the two-constants theorem and optimal recovery of analytic functions
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 1348
EP  - 1360
VL  - 210
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_10_a0/
LA  - en
ID  - SM_2019_210_10_a0
ER  - 
%0 Journal Article
%A R. R. Akopyan
%T An analogue of the two-constants theorem and optimal recovery of analytic functions
%J Sbornik. Mathematics
%D 2019
%P 1348-1360
%V 210
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2019_210_10_a0/
%G en
%F SM_2019_210_10_a0
R. R. Akopyan. An analogue of the two-constants theorem and optimal recovery of analytic functions. Sbornik. Mathematics, Tome 210 (2019) no. 10, pp. 1348-1360. http://geodesic.mathdoc.fr/item/SM_2019_210_10_a0/