Sobolev orthogonal polynomials generated by Jacobi and Legendre polynomials, and special series with the sticking property for their partial sums
Sbornik. Mathematics, Tome 209 (2018) no. 9, pp. 1390-1417 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is concerned with polynomials $p^{\alpha,\beta}_{r,k}(x)$, $k=0,1,\dots$, orthonormal with respect to the Sobolev-type inner product $$ \langle f,g\rangle =\sum_{\nu=0}^{r-1}f^{(\nu)}(-1)g^{(\nu)}(-1)+\int_{-1}^{1}f^{(r)}(t)g^{(r)}(t)(1-t)^\alpha(1+t)^\beta\, dt\,, $$ where $r$ is an arbitrary natural number. Fourier series in the polynomials $p_{r,k}(x)=p^{0,0}_{r,k}(x)$ and some generalizations of them are introduced. Partial sums of such series are shown to retain certain important properties of the partial sums of Fourier series in the polynomials $p_{r,k}(x)$, in particular, the property of $r$-fold coincidence (sticking) of the original function $f(x)$ and the partial sums of the Fourier series in the polynomials $p_{r,k}(x)$ at the points $-1$ and $1$. The main emphasis is put on problems of approximating smooth and analytic functions by partial sums of such generalized series, which are special series in ultraspherical Jacobi polynomials, whose partial sums have the sticking property at the points $-1$ and $1$. Bibliography: 31 titles.
Keywords: Fourier series in Sobolev orthogonal polynomials; Legendre and Jacobi polynomials; special (sticking) series is ultraspherical polynomials; approximative properties.
@article{SM_2018_209_9_a6,
     author = {I. I. Sharapudinov},
     title = {Sobolev orthogonal polynomials generated by {Jacobi} and {Legendre} polynomials, and special series with the sticking property for their partial sums},
     journal = {Sbornik. Mathematics},
     pages = {1390--1417},
     year = {2018},
     volume = {209},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_9_a6/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
TI  - Sobolev orthogonal polynomials generated by Jacobi and Legendre polynomials, and special series with the sticking property for their partial sums
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 1390
EP  - 1417
VL  - 209
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_9_a6/
LA  - en
ID  - SM_2018_209_9_a6
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%T Sobolev orthogonal polynomials generated by Jacobi and Legendre polynomials, and special series with the sticking property for their partial sums
%J Sbornik. Mathematics
%D 2018
%P 1390-1417
%V 209
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2018_209_9_a6/
%G en
%F SM_2018_209_9_a6
I. I. Sharapudinov. Sobolev orthogonal polynomials generated by Jacobi and Legendre polynomials, and special series with the sticking property for their partial sums. Sbornik. Mathematics, Tome 209 (2018) no. 9, pp. 1390-1417. http://geodesic.mathdoc.fr/item/SM_2018_209_9_a6/

[1] I. I. Sharapudinov, “Approximation of functions of variable smoothness by Fourier–Legendre sums”, Sb. Math., 191:5 (2000), 759–777 | DOI | DOI | MR | Zbl

[2] I. I. Sharapudinov, “Approximation properties of the operators $\mathscr Y_{n+2r}(f)$ and of their discrete analogs”, Math. Notes, 72:5 (2002), 705–732 | DOI | DOI | MR | Zbl

[3] I. I. Sharapudinov, Smeshannye ryady po ortogonalnym polinomam, Izd-vo Dagestan. nauch. tsentra RAN, Makhachkala, 2004, 276 pp.

[4] I. I. Sharapudinov, “Approximation properties of mixed series in terms of Legendre polynomials on the classes $W^r$”, Sb. Math., 197:3 (2006), 433–452 | DOI | DOI | MR | Zbl

[5] I. I. Sharapudinov, “Approximation properties of the Vallée-Poussin means of partial sums of a mixed series of Legendre polynomials”, Math. Notes, 84:3 (2008), 417–434 | DOI | DOI | MR | Zbl

[6] I. I. Sharapudinov, “Mixed series in ultraspherical polynomials and their approximation properties”, Sb. Math., 194:3 (2003), 423–456 | DOI | DOI | MR | Zbl

[7] I. I. Sharapudinov, T. I. Sharapudinov, “Mixed series of Jacobi and Chebyshev polynomials and their discretization”, Math. Notes, 88:1 (2010), 112–139 | DOI | DOI | MR | Zbl

[8] I. I. Sharapudinov, “Some special series in ultraspherical polynomials and their approximation properties”, Izv. Math., 78:5 (2014), 1036–1059 | DOI | DOI | MR | Zbl

[9] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, rev. ed., Amer. Math. Soc., Providence, RI, 1959, ix+421 pp. | MR | Zbl | Zbl

[10] G. Gasper, “Positiviti and special functions”, Theory and application of special functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, WI, 1975), Academic Press, New York, 1975, 375–433 | MR | Zbl

[11] K. H. Kwon, L. L. Littlejohn, “The orthogonality of the Laguerre polynomials $\{L_n^{-k}(x)\}$ for positive integers $k$”, Ann. Numer. Math., 2:1-4 (1995), 289–303 | MR | Zbl

[12] K. H. Kwon, L. L. Littlejohn, “Sobolev orthogonal polynomials and second-order differential equations”, Rocky Mountain J. Math., 28:2 (1998), 547–594 | DOI | MR | Zbl

[13] F. Marcellán, M. Alfaro, M. L. Rezola, “Orthogonal polynomials on Sobolev spaces: old and new directions”, J. Comput. Appl. Math., 48:1-2 (1993), 113–131 | DOI | MR | Zbl

[14] A. Iserles, P. E. Koch, S. P. Nørsett, J. M. Sanz-Serna, “On polynomials orthogonal with respect to certain Sobolev inner products”, J. Approx. Theory, 65:2 (1991), 151–175 | DOI | MR | Zbl

[15] H. G. Meijer, “Laguerre polynomials generalized to a certain discrete Sobolev inner product space”, J. Approx. Theory, 73:1 (1993), 1–16 | DOI | MR | Zbl

[16] G. López, F. Marcellán, W. Van Assche, “Relative asymptotics for polynomials orthogonal with respect to a discrete Sobolev inner product”, Constr. Approx., 11:1 (1995), 107–137 | DOI | MR | Zbl

[17] F. Marcellán, Yuan Xu, “On Sobolev orthogonal polynomials”, Expo. Math., 33:3 (2015), 308–352 | DOI | MR | Zbl

[18] I. I. Sharapudinov, “Sistemy funktsii, ortogonalnye po Sobolevu, porozhdennye ortogonalnymi funktsiyami”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Materialy 18-i mezhdunarodnoi Saratovskoi zimnei shkoly, Nauchnaya kniga, Saratov, 2016, 329–332

[19] L. N. Trefethen, Spectral methods in Matlab, Software Environ. Tools, 10, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000, xviii+165 pp. | DOI | MR | Zbl

[20] L. N. Trefethen, Finite difference and spectral methods for ordinary and partial differential equation, unpublished book, 1996, 325 pp. http://people.maths.ox.ac.uk/trefethen/pdetext.html

[21] V. V. Solodovnikov, A. N. Dmitriev, N. D. Egupov, Spektralnye metody rascheta i proektirovaniya sistem upravleniya, Mashinostroenie, M., 1986, 440 pp. | Zbl

[22] S. Paszkowski, Zastosowania numeryczne wielomianów i szeregów Czebyszewa, Państwowe Wydawnictwo Naukowe, Warsaw, 1975, 481 pp. | MR | MR | Zbl | Zbl

[23] M. G. Magomed-Kasumov, “Priblizhennoe reshenie obyknovennykh differentsialnykh uravnenii s ispolzovaniem smeshannykh ryadov po sisteme Khaara”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Materialy 18-i mezhdunarodnoi Saratovskoi zimnei shkoly, Nauchnaya kniga, Saratov, 2016, 176–178

[24] I. I. Sharapudinov, “Nekotorye spetsialnye ryady po obschim polinomam Lagerra i ryady Fure po polinomam Lagerra, ortogonalnym po Sobolevu”, Dagestanskie elektronnye matematicheskie izvestiya, 2015, no. 4, 31–73 | DOI

[25] A. A. Gončar, “On convergence of Padé approximants for some classes of meromorphic functions”, Math. USSR-Sb., 26:4 (1975), 555–575 | DOI | MR | Zbl

[26] S. A. Teljakovski\u i, “Two theorems on the approximation of functions by algebraic polynomials”, Amer. Math. Soc. Transl. Ser. 2, 77, Amer. Math. Soc., Providence, RI, 1968, 163–178 | DOI | MR | Zbl

[27] I. E. Gopengauz, “On a theorem of A. F. Timan on the approximation of functions by polynomials on a finite segment”, Math. Notes, 1:2 (1967), 110–116 | DOI | MR | Zbl

[28] K. I. Oskolkov, “Lebesgue's inequality in a uniform metric and on a set of full measure”, Math. Notes, 18:4 (1975), 895–902 | DOI | MR | Zbl

[29] I. I. Šarapudinov, “On the best approximation and polinomial of the least quadratic deviation”, Anal. Math., 9:3 (1983), 223–234 | DOI | MR | Zbl

[30] I. I. Sharapudinov, “Best approximation and the Fourier–Jacobi sums”, Math. Notes, 34:5 (1983), 816–821 | DOI | MR | Zbl

[31] A. F. Timan, Theory of approximation of functions of a real variable, International Series of Monographs in Pure and Applied Mathematics, 34, A Pergamon Press Book The Macmillan Co., New York, 1963, xii+631 pp. | MR | MR | Zbl