@article{SM_2018_209_9_a6,
author = {I. I. Sharapudinov},
title = {Sobolev orthogonal polynomials generated by {Jacobi} and {Legendre} polynomials, and special series with the sticking property for their partial sums},
journal = {Sbornik. Mathematics},
pages = {1390--1417},
year = {2018},
volume = {209},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_9_a6/}
}
TY - JOUR AU - I. I. Sharapudinov TI - Sobolev orthogonal polynomials generated by Jacobi and Legendre polynomials, and special series with the sticking property for their partial sums JO - Sbornik. Mathematics PY - 2018 SP - 1390 EP - 1417 VL - 209 IS - 9 UR - http://geodesic.mathdoc.fr/item/SM_2018_209_9_a6/ LA - en ID - SM_2018_209_9_a6 ER -
%0 Journal Article %A I. I. Sharapudinov %T Sobolev orthogonal polynomials generated by Jacobi and Legendre polynomials, and special series with the sticking property for their partial sums %J Sbornik. Mathematics %D 2018 %P 1390-1417 %V 209 %N 9 %U http://geodesic.mathdoc.fr/item/SM_2018_209_9_a6/ %G en %F SM_2018_209_9_a6
I. I. Sharapudinov. Sobolev orthogonal polynomials generated by Jacobi and Legendre polynomials, and special series with the sticking property for their partial sums. Sbornik. Mathematics, Tome 209 (2018) no. 9, pp. 1390-1417. http://geodesic.mathdoc.fr/item/SM_2018_209_9_a6/
[1] I. I. Sharapudinov, “Approximation of functions of variable smoothness by Fourier–Legendre sums”, Sb. Math., 191:5 (2000), 759–777 | DOI | DOI | MR | Zbl
[2] I. I. Sharapudinov, “Approximation properties of the operators $\mathscr Y_{n+2r}(f)$ and of their discrete analogs”, Math. Notes, 72:5 (2002), 705–732 | DOI | DOI | MR | Zbl
[3] I. I. Sharapudinov, Smeshannye ryady po ortogonalnym polinomam, Izd-vo Dagestan. nauch. tsentra RAN, Makhachkala, 2004, 276 pp.
[4] I. I. Sharapudinov, “Approximation properties of mixed series in terms of Legendre polynomials on the classes $W^r$”, Sb. Math., 197:3 (2006), 433–452 | DOI | DOI | MR | Zbl
[5] I. I. Sharapudinov, “Approximation properties of the Vallée-Poussin means of partial sums of a mixed series of Legendre polynomials”, Math. Notes, 84:3 (2008), 417–434 | DOI | DOI | MR | Zbl
[6] I. I. Sharapudinov, “Mixed series in ultraspherical polynomials and their approximation properties”, Sb. Math., 194:3 (2003), 423–456 | DOI | DOI | MR | Zbl
[7] I. I. Sharapudinov, T. I. Sharapudinov, “Mixed series of Jacobi and Chebyshev polynomials and their discretization”, Math. Notes, 88:1 (2010), 112–139 | DOI | DOI | MR | Zbl
[8] I. I. Sharapudinov, “Some special series in ultraspherical polynomials and their approximation properties”, Izv. Math., 78:5 (2014), 1036–1059 | DOI | DOI | MR | Zbl
[9] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, rev. ed., Amer. Math. Soc., Providence, RI, 1959, ix+421 pp. | MR | Zbl | Zbl
[10] G. Gasper, “Positiviti and special functions”, Theory and application of special functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, WI, 1975), Academic Press, New York, 1975, 375–433 | MR | Zbl
[11] K. H. Kwon, L. L. Littlejohn, “The orthogonality of the Laguerre polynomials $\{L_n^{-k}(x)\}$ for positive integers $k$”, Ann. Numer. Math., 2:1-4 (1995), 289–303 | MR | Zbl
[12] K. H. Kwon, L. L. Littlejohn, “Sobolev orthogonal polynomials and second-order differential equations”, Rocky Mountain J. Math., 28:2 (1998), 547–594 | DOI | MR | Zbl
[13] F. Marcellán, M. Alfaro, M. L. Rezola, “Orthogonal polynomials on Sobolev spaces: old and new directions”, J. Comput. Appl. Math., 48:1-2 (1993), 113–131 | DOI | MR | Zbl
[14] A. Iserles, P. E. Koch, S. P. Nørsett, J. M. Sanz-Serna, “On polynomials orthogonal with respect to certain Sobolev inner products”, J. Approx. Theory, 65:2 (1991), 151–175 | DOI | MR | Zbl
[15] H. G. Meijer, “Laguerre polynomials generalized to a certain discrete Sobolev inner product space”, J. Approx. Theory, 73:1 (1993), 1–16 | DOI | MR | Zbl
[16] G. López, F. Marcellán, W. Van Assche, “Relative asymptotics for polynomials orthogonal with respect to a discrete Sobolev inner product”, Constr. Approx., 11:1 (1995), 107–137 | DOI | MR | Zbl
[17] F. Marcellán, Yuan Xu, “On Sobolev orthogonal polynomials”, Expo. Math., 33:3 (2015), 308–352 | DOI | MR | Zbl
[18] I. I. Sharapudinov, “Sistemy funktsii, ortogonalnye po Sobolevu, porozhdennye ortogonalnymi funktsiyami”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Materialy 18-i mezhdunarodnoi Saratovskoi zimnei shkoly, Nauchnaya kniga, Saratov, 2016, 329–332
[19] L. N. Trefethen, Spectral methods in Matlab, Software Environ. Tools, 10, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000, xviii+165 pp. | DOI | MR | Zbl
[20] L. N. Trefethen, Finite difference and spectral methods for ordinary and partial differential equation, unpublished book, 1996, 325 pp. http://people.maths.ox.ac.uk/trefethen/pdetext.html
[21] V. V. Solodovnikov, A. N. Dmitriev, N. D. Egupov, Spektralnye metody rascheta i proektirovaniya sistem upravleniya, Mashinostroenie, M., 1986, 440 pp. | Zbl
[22] S. Paszkowski, Zastosowania numeryczne wielomianów i szeregów Czebyszewa, Państwowe Wydawnictwo Naukowe, Warsaw, 1975, 481 pp. | MR | MR | Zbl | Zbl
[23] M. G. Magomed-Kasumov, “Priblizhennoe reshenie obyknovennykh differentsialnykh uravnenii s ispolzovaniem smeshannykh ryadov po sisteme Khaara”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Materialy 18-i mezhdunarodnoi Saratovskoi zimnei shkoly, Nauchnaya kniga, Saratov, 2016, 176–178
[24] I. I. Sharapudinov, “Nekotorye spetsialnye ryady po obschim polinomam Lagerra i ryady Fure po polinomam Lagerra, ortogonalnym po Sobolevu”, Dagestanskie elektronnye matematicheskie izvestiya, 2015, no. 4, 31–73 | DOI
[25] A. A. Gončar, “On convergence of Padé approximants for some classes of meromorphic functions”, Math. USSR-Sb., 26:4 (1975), 555–575 | DOI | MR | Zbl
[26] S. A. Teljakovski\u i, “Two theorems on the approximation of functions by algebraic polynomials”, Amer. Math. Soc. Transl. Ser. 2, 77, Amer. Math. Soc., Providence, RI, 1968, 163–178 | DOI | MR | Zbl
[27] I. E. Gopengauz, “On a theorem of A. F. Timan on the approximation of functions by polynomials on a finite segment”, Math. Notes, 1:2 (1967), 110–116 | DOI | MR | Zbl
[28] K. I. Oskolkov, “Lebesgue's inequality in a uniform metric and on a set of full measure”, Math. Notes, 18:4 (1975), 895–902 | DOI | MR | Zbl
[29] I. I. Šarapudinov, “On the best approximation and polinomial of the least quadratic deviation”, Anal. Math., 9:3 (1983), 223–234 | DOI | MR | Zbl
[30] I. I. Sharapudinov, “Best approximation and the Fourier–Jacobi sums”, Math. Notes, 34:5 (1983), 816–821 | DOI | MR | Zbl
[31] A. F. Timan, Theory of approximation of functions of a real variable, International Series of Monographs in Pure and Applied Mathematics, 34, A Pergamon Press Book The Macmillan Co., New York, 1963, xii+631 pp. | MR | MR | Zbl