Asymptotic behaviour of even canonical products with slight abnormalities in the distribution of the set of zeros, which has positive density
Sbornik. Mathematics, Tome 209 (2018) no. 6, pp. 871-900 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The asymptotic behaviour of even canonical products with zeros on the real axis is considered. It is assumed that the set of zeros has density (the sequence $\pm \lambda_{n}$ has density). Sharp asymptotic estimates for the logarithm of the modulus of the canonical product are obtained under certain restrictions on the rate of convergence of the ratio $n/\lambda_{n}$ to its limit. Bibliography: 8 titles.
Keywords: even canonical product, regularly varying function, asymptotic estimate.
@article{SM_2018_209_6_a6,
     author = {V. N. Seliverstov},
     title = {Asymptotic behaviour of even canonical products with slight abnormalities in the distribution of the set of zeros, which has positive density},
     journal = {Sbornik. Mathematics},
     pages = {871--900},
     year = {2018},
     volume = {209},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_6_a6/}
}
TY  - JOUR
AU  - V. N. Seliverstov
TI  - Asymptotic behaviour of even canonical products with slight abnormalities in the distribution of the set of zeros, which has positive density
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 871
EP  - 900
VL  - 209
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_6_a6/
LA  - en
ID  - SM_2018_209_6_a6
ER  - 
%0 Journal Article
%A V. N. Seliverstov
%T Asymptotic behaviour of even canonical products with slight abnormalities in the distribution of the set of zeros, which has positive density
%J Sbornik. Mathematics
%D 2018
%P 871-900
%V 209
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2018_209_6_a6/
%G en
%F SM_2018_209_6_a6
V. N. Seliverstov. Asymptotic behaviour of even canonical products with slight abnormalities in the distribution of the set of zeros, which has positive density. Sbornik. Mathematics, Tome 209 (2018) no. 6, pp. 871-900. http://geodesic.mathdoc.fr/item/SM_2018_209_6_a6/

[1] A. F. Leontev, Ryady eksponent, Nauka, M., 1976, 536 pp. | MR | Zbl

[2] A. Yu. Popov, “Tochnaya otsenka indeksa kondensatsii”, Math. Montisnigri, 11 (1999), 67–103 | MR | Zbl

[3] A. M. Sedletskii, Klassy analiticheskikh preobrazovanii Fure i eksponentsialnye approksimatsii, Fizmatlit, M., 2005, 503 pp.

[4] A. A. Yukhimenko, “Completeness and basis properties of systems of exponentials in weighted spaces $L^p(-\pi,\pi)$”, Math. Notes, 81:5 (2007), 695–707 | DOI | DOI | MR | Zbl

[5] E. Seneta, Regularly varying functions, Lecture Notes in Math., 508, Springer-Verlag, Berlin–New York, 1976, v+112 pp. | DOI | MR | MR | Zbl | Zbl

[6] A. M. Gaĭsin, D. I. Sergeeva, “Entire functions with a given sequence of zeros and of regular behavior on the real axis. I”, Siberian Math. J., 48:5 (2007), 798–808 | DOI | MR | Zbl

[7] V. B. Sherstyukov, “Distribution of the zeros of canonical products and weighted condensation index”, Sb. Math., 206:9 (2015), 1299–1339 | DOI | DOI | MR | Zbl

[8] A. Yu. Popov, “Extremal problems in the theory of analytic continuation”, Sb. Math., 190:5 (1999), 737–761 | DOI | DOI | MR | Zbl