Mots-clés : $p$-dimensional Hausdorff content, $L$-oscillation.
@article{SM_2018_209_6_a5,
author = {P. V. Paramonov},
title = {Criteria for the individual $C^m$-approximability of~functions on compact subsets of~$\mathbb R^N$ by solutions of second-order homogeneous elliptic equations},
journal = {Sbornik. Mathematics},
pages = {857--870},
year = {2018},
volume = {209},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_6_a5/}
}
TY - JOUR AU - P. V. Paramonov TI - Criteria for the individual $C^m$-approximability of functions on compact subsets of $\mathbb R^N$ by solutions of second-order homogeneous elliptic equations JO - Sbornik. Mathematics PY - 2018 SP - 857 EP - 870 VL - 209 IS - 6 UR - http://geodesic.mathdoc.fr/item/SM_2018_209_6_a5/ LA - en ID - SM_2018_209_6_a5 ER -
%0 Journal Article %A P. V. Paramonov %T Criteria for the individual $C^m$-approximability of functions on compact subsets of $\mathbb R^N$ by solutions of second-order homogeneous elliptic equations %J Sbornik. Mathematics %D 2018 %P 857-870 %V 209 %N 6 %U http://geodesic.mathdoc.fr/item/SM_2018_209_6_a5/ %G en %F SM_2018_209_6_a5
P. V. Paramonov. Criteria for the individual $C^m$-approximability of functions on compact subsets of $\mathbb R^N$ by solutions of second-order homogeneous elliptic equations. Sbornik. Mathematics, Tome 209 (2018) no. 6, pp. 857-870. http://geodesic.mathdoc.fr/item/SM_2018_209_6_a5/
[1] L. Hörmander, The analysis of linear partial differential operators, v. I, Grundlehren Math. Wiss., 256, Distribution theory and Fourier analysis, Springer-Verlag, Berlin, 1983, ix+391 pp. | DOI | MR | MR | Zbl | Zbl
[2] A. G. O'Farrell, “Rational approximation in Lipschitz norms. II”, Proc. Roy. Irish Acad. Sect. A, 79:11 (1979), 103–114 | MR | Zbl
[3] J. Verdera, “$C^m$ approximation by solutions of elliptic equations, and Calderón–Zygmund operators”, Duke Math. J., 55:1 (1987), 157–187 | DOI | MR | Zbl
[4] J. Mateu, Yu. Netrusov, J. Orobitg, J. Verdera, “BMO and Lipschitz approximation by solutions of elliptic equations”, Ann. Inst. Fourier (Grenoble), 46:4 (1996), 1057–1081 | DOI | MR | Zbl
[5] M. Ya. Mazalov, P. V. Paramonov, K. Yu. Fedorovskiy, “Conditions for $C^m$-approximability of functions by solutions of elliptic equations”, Russian Math. Surveys, 67:6 (2012), 1023–1068 | DOI | DOI | MR | Zbl
[6] M. Ya. Mazalov, “A criterion for approximability by harmonic functions in Lipschitz spaces”, J. Math. Sci. (N. Y.), 194:6 (2013), 678–692 | DOI | MR | Zbl
[7] M. Ya. Mazalov, P. V. Paramonov, “Criteria for $C^m$-approximability by bianalytic functions on planar compact sets”, Sb. Math., 206:2 (2015), 242–281 | DOI | DOI | MR | Zbl
[8] A. P. Calderón, A. Zygmund, “Singular integrals and periodic functions”, Studia Math., 14 (1954), 249–271 | DOI | MR | Zbl
[9] P. V. Paramonov, “Some new criteria for uniform approximability of functions by rational fractions”, Sb. Math., 186:9 (1995), 1325–1340 | DOI | MR | Zbl
[10] J. Verdera, M. S. Mel'nikov, P. V. Paramonov, “$C^1$-approximation and extension of subharmonic functions”, Sb. Math., 192:4 (2001), 515–535 | DOI | DOI | MR | Zbl
[11] A. G. Vitushkin, “The analytic capacity of sets in problems of approximation theory”, Russian Math. Surveys, 22:6 (1967), 139–200 | DOI | MR | Zbl