Criteria for the individual $C^m$-approximability of~functions on compact subsets of~$\mathbb R^N$ by solutions of second-order homogeneous elliptic equations
Sbornik. Mathematics, Tome 209 (2018) no. 6, pp. 857-870

Voir la notice de l'article provenant de la source Math-Net.Ru

Criteria for the individual approximability of functions by solutions of second-order homogeneous elliptic equations with constant complex coefficients in the norms of Whitney-type $C^m$-spaces on compact subsets of $\mathbb R^N$, $N\in\{2,3,\dots\}$, are obtained for $m \in (0, 1) \cup (0,2)$. These results, which are analogues of Vitushkin's celebrated criteria for uniform rational approximation, were previously established by Mazalov for harmonic approximations (for $m \in (0, 1)$ and $N \geqslant 3$) and by Mazalov and Paramonov for bi-analytic approximation. Bibliography: 11 titles.
Keywords: $C^m$-approximation by solutions of homogeneous elliptic equations, Vitushkin-type localization operator, $C^m$-invariance of Calderón-Zygmund operators, harmonic $C^m$-capacity
Mots-clés : $p$-dimensional Hausdorff content, $L$-oscillation.
@article{SM_2018_209_6_a5,
     author = {P. V. Paramonov},
     title = {Criteria for the individual $C^m$-approximability of~functions on compact subsets of~$\mathbb R^N$ by solutions of second-order homogeneous elliptic equations},
     journal = {Sbornik. Mathematics},
     pages = {857--870},
     publisher = {mathdoc},
     volume = {209},
     number = {6},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_6_a5/}
}
TY  - JOUR
AU  - P. V. Paramonov
TI  - Criteria for the individual $C^m$-approximability of~functions on compact subsets of~$\mathbb R^N$ by solutions of second-order homogeneous elliptic equations
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 857
EP  - 870
VL  - 209
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_6_a5/
LA  - en
ID  - SM_2018_209_6_a5
ER  - 
%0 Journal Article
%A P. V. Paramonov
%T Criteria for the individual $C^m$-approximability of~functions on compact subsets of~$\mathbb R^N$ by solutions of second-order homogeneous elliptic equations
%J Sbornik. Mathematics
%D 2018
%P 857-870
%V 209
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2018_209_6_a5/
%G en
%F SM_2018_209_6_a5
P. V. Paramonov. Criteria for the individual $C^m$-approximability of~functions on compact subsets of~$\mathbb R^N$ by solutions of second-order homogeneous elliptic equations. Sbornik. Mathematics, Tome 209 (2018) no. 6, pp. 857-870. http://geodesic.mathdoc.fr/item/SM_2018_209_6_a5/