Criteria for the individual $C^m$-approximability of~functions on compact subsets of~$\mathbb R^N$ by solutions of second-order homogeneous elliptic equations
Sbornik. Mathematics, Tome 209 (2018) no. 6, pp. 857-870
Voir la notice de l'article provenant de la source Math-Net.Ru
Criteria for the individual approximability of functions by solutions of second-order homogeneous elliptic equations with constant complex coefficients in the norms of Whitney-type $C^m$-spaces on compact subsets of $\mathbb R^N$, $N\in\{2,3,\dots\}$, are obtained for $m \in (0, 1) \cup (0,2)$. These results, which are analogues of Vitushkin's celebrated criteria for uniform rational approximation, were previously established by Mazalov for harmonic approximations (for $m \in (0, 1)$ and $N \geqslant 3$) and by Mazalov and Paramonov for bi-analytic approximation.
Bibliography: 11 titles.
Keywords:
$C^m$-approximation by solutions of homogeneous elliptic equations, Vitushkin-type localization operator, $C^m$-invariance of Calderón-Zygmund operators, harmonic $C^m$-capacity
Mots-clés : $p$-dimensional Hausdorff content, $L$-oscillation.
Mots-clés : $p$-dimensional Hausdorff content, $L$-oscillation.
@article{SM_2018_209_6_a5,
author = {P. V. Paramonov},
title = {Criteria for the individual $C^m$-approximability of~functions on compact subsets of~$\mathbb R^N$ by solutions of second-order homogeneous elliptic equations},
journal = {Sbornik. Mathematics},
pages = {857--870},
publisher = {mathdoc},
volume = {209},
number = {6},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2018_209_6_a5/}
}
TY - JOUR AU - P. V. Paramonov TI - Criteria for the individual $C^m$-approximability of~functions on compact subsets of~$\mathbb R^N$ by solutions of second-order homogeneous elliptic equations JO - Sbornik. Mathematics PY - 2018 SP - 857 EP - 870 VL - 209 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2018_209_6_a5/ LA - en ID - SM_2018_209_6_a5 ER -
%0 Journal Article %A P. V. Paramonov %T Criteria for the individual $C^m$-approximability of~functions on compact subsets of~$\mathbb R^N$ by solutions of second-order homogeneous elliptic equations %J Sbornik. Mathematics %D 2018 %P 857-870 %V 209 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2018_209_6_a5/ %G en %F SM_2018_209_6_a5
P. V. Paramonov. Criteria for the individual $C^m$-approximability of~functions on compact subsets of~$\mathbb R^N$ by solutions of second-order homogeneous elliptic equations. Sbornik. Mathematics, Tome 209 (2018) no. 6, pp. 857-870. http://geodesic.mathdoc.fr/item/SM_2018_209_6_a5/