Criteria for the individual $C^m$-approximability of functions on compact subsets of $\mathbb R^N$ by solutions of second-order homogeneous elliptic equations
Sbornik. Mathematics, Tome 209 (2018) no. 6, pp. 857-870
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Criteria for the individual approximability of functions by solutions of second-order homogeneous elliptic equations with constant complex coefficients in the norms of Whitney-type $C^m$-spaces on compact subsets of $\mathbb R^N$, $N\in\{2,3,\dots\}$, are obtained for $m \in (0, 1) \cup (0,2)$. These results, which are analogues of Vitushkin's celebrated criteria for uniform rational approximation, were previously established by Mazalov for harmonic approximations (for $m \in (0, 1)$ and $N \geqslant 3$) and by Mazalov and Paramonov for bi-analytic approximation. Bibliography: 11 titles.
Keywords: $C^m$-approximation by solutions of homogeneous elliptic equations, Vitushkin-type localization operator, $C^m$-invariance of Calderón-Zygmund operators, harmonic $C^m$-capacity
Mots-clés : $p$-dimensional Hausdorff content, $L$-oscillation.
@article{SM_2018_209_6_a5,
     author = {P. V. Paramonov},
     title = {Criteria for the individual $C^m$-approximability of~functions on compact subsets of~$\mathbb R^N$ by solutions of second-order homogeneous elliptic equations},
     journal = {Sbornik. Mathematics},
     pages = {857--870},
     year = {2018},
     volume = {209},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2018_209_6_a5/}
}
TY  - JOUR
AU  - P. V. Paramonov
TI  - Criteria for the individual $C^m$-approximability of functions on compact subsets of $\mathbb R^N$ by solutions of second-order homogeneous elliptic equations
JO  - Sbornik. Mathematics
PY  - 2018
SP  - 857
EP  - 870
VL  - 209
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2018_209_6_a5/
LA  - en
ID  - SM_2018_209_6_a5
ER  - 
%0 Journal Article
%A P. V. Paramonov
%T Criteria for the individual $C^m$-approximability of functions on compact subsets of $\mathbb R^N$ by solutions of second-order homogeneous elliptic equations
%J Sbornik. Mathematics
%D 2018
%P 857-870
%V 209
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2018_209_6_a5/
%G en
%F SM_2018_209_6_a5
P. V. Paramonov. Criteria for the individual $C^m$-approximability of functions on compact subsets of $\mathbb R^N$ by solutions of second-order homogeneous elliptic equations. Sbornik. Mathematics, Tome 209 (2018) no. 6, pp. 857-870. http://geodesic.mathdoc.fr/item/SM_2018_209_6_a5/

[1] L. Hörmander, The analysis of linear partial differential operators, v. I, Grundlehren Math. Wiss., 256, Distribution theory and Fourier analysis, Springer-Verlag, Berlin, 1983, ix+391 pp. | DOI | MR | MR | Zbl | Zbl

[2] A. G. O'Farrell, “Rational approximation in Lipschitz norms. II”, Proc. Roy. Irish Acad. Sect. A, 79:11 (1979), 103–114 | MR | Zbl

[3] J. Verdera, “$C^m$ approximation by solutions of elliptic equations, and Calderón–Zygmund operators”, Duke Math. J., 55:1 (1987), 157–187 | DOI | MR | Zbl

[4] J. Mateu, Yu. Netrusov, J. Orobitg, J. Verdera, “BMO and Lipschitz approximation by solutions of elliptic equations”, Ann. Inst. Fourier (Grenoble), 46:4 (1996), 1057–1081 | DOI | MR | Zbl

[5] M. Ya. Mazalov, P. V. Paramonov, K. Yu. Fedorovskiy, “Conditions for $C^m$-approximability of functions by solutions of elliptic equations”, Russian Math. Surveys, 67:6 (2012), 1023–1068 | DOI | DOI | MR | Zbl

[6] M. Ya. Mazalov, “A criterion for approximability by harmonic functions in Lipschitz spaces”, J. Math. Sci. (N. Y.), 194:6 (2013), 678–692 | DOI | MR | Zbl

[7] M. Ya. Mazalov, P. V. Paramonov, “Criteria for $C^m$-approximability by bianalytic functions on planar compact sets”, Sb. Math., 206:2 (2015), 242–281 | DOI | DOI | MR | Zbl

[8] A. P. Calderón, A. Zygmund, “Singular integrals and periodic functions”, Studia Math., 14 (1954), 249–271 | DOI | MR | Zbl

[9] P. V. Paramonov, “Some new criteria for uniform approximability of functions by rational fractions”, Sb. Math., 186:9 (1995), 1325–1340 | DOI | MR | Zbl

[10] J. Verdera, M. S. Mel'nikov, P. V. Paramonov, “$C^1$-approximation and extension of subharmonic functions”, Sb. Math., 192:4 (2001), 515–535 | DOI | DOI | MR | Zbl

[11] A. G. Vitushkin, “The analytic capacity of sets in problems of approximation theory”, Russian Math. Surveys, 22:6 (1967), 139–200 | DOI | MR | Zbl